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The article deals with measurement and visualization of the 
operating deflection shapes (ODS) on laboratory task. The aim 
is to measure Frequency Response Function (FRF) of selected 
points of the template. Together with visualization of their 
magnitude, real part, imaginary part or phase and show 
template‘s ODS. The measuring chain consists of an 
accelerometer, laser and shaker. Data acquisition is performed 
via PULSE LabShop application. Visualization of processed data 
is accomplished in Matlab GUI application called “ODS app“. 
The article also contains the theoretical basis of the 
measurement principle along with setup of PULSE LabShop 
project and general description of Matlab GUI application 
components. 

KEYWORDS 
Auto-spectrum, cross-spectrum, deflection shapes, frequency 
transfer function, Matlab, transfer function  

1 INTRODUCTION  

Operating deflection shapes (ODS) analysis is a method for 
visualization the object dynamic under self-exciting forces. This 
method enables to identify, where the machine is moving with 
the maximum displacement, velocity or acceleration and which 
frequencies of excitation cause these problems. It is useful tool 
for the diagnostics of faults and for the development of new 
components or whole machines. 
Method is based on experimental measuring of frequency 
response functions and interpreting them as an animation of a 
simplified geometric model representing the examined sample. 
The principle of this method is divided into two phases. The 
first phase represents measuring of FRF, i.e. determination of 
vibration magnitudes at single characteristic points and mutual 
phases (usually to one reference signal). The next step is the 
creation of an animation, which illustrates the shape of 
vibration during the excitation by selected frequency or by the 
combination of more frequencies. The movement of structure 
is usually amplified and slowed-down in the visualisation to 
make it suitable for visual inspection. 
We can rank the most important pros: simplicity, great 
information value and wide range of implementations. The 
method allows e.g. identification of dynamic properties 
(resonance frequencies, identification of largest displacement 
location on part and design of flexible fitting, misery or 
unbalance). 
This method grew up on its importance at the end of 80’s in the 
20th century due to the increasing computing power and the 
implementation of two-channel (and later multi-channel) signal 
analysers into the diagnostics. 
The operating deflection shapes analysis has become 
unnecessary part of machine diagnostics knowledge and this 
paper presents a laboratory task which is used for the 
education of mechanical engineers. The next chapter deals with 
a measurement of frequency response functions. It continues 
with the part which presents the relationship between 

frequency response functions and shapes, then an Matlab 
application for shape visualisation is introduced and finally, 
some results of the experiment are presented. 

2 FREQUENCY RESPONSE FUNCTION 

Frequency response function (FRF) represents the relation of 
the output and the input signal in a frequency domain. FRFs 
between measured points pairs are necessary for the ODS 
visualization [Herfert 2015], [Yonghui 2017], [Ganeriwala 2008]. 
It is accomplished in several steps. Two discretized signals are 
measured at the beginning. Let’s call the output channel of the 
system simply as a “signal” and the input as a “reference 
signal”. The signal is marked as y(kT) and the reference signal as 
x(kT). Both signals are then divided into data blocks with 2/3 
overlay and M realizations of signals y1(kT) ... yM(kT), x1(kT) ... 
xM(kT) are extracted. All the realizations have N number of 
samples. In the next step, each of the blocks are weighted by 
Hanning window and obtained results are transformed using 
the Fast Fourier transform (FFT) into the frequency domain 
representations Y1(f) ... YM(f), X1(f) ... XM(f). Complex conjugates 
are calculated by changing the sign of the imaginary part of 
complex numbers and these representations are marked with 
superscript "*": Y1*(f) ... YM* (f), X1*(f) ... XM*(f). Now, it is 
possible to calculate auto-spectrum Syy of the signal, auto-
spectrum Sxx of a reference signal. And a cross spectrum Sxy.  
 

 

Figure 1. Dividing the measured signal into M blocks and weighting by 
Hanning window  

The auto-spectrum (also known as power spectrum) of the 
signal weighted block is computed as a product of signal’s Fast 
Fourier transform and corresponding complex conjugate. The 
resulting auto-spectrum is computed as an average over M 
measurement realizations. 
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The averaging smooths the resulting spectrum but also 
consumes measurement time, because more samples are 
needed. 
The auto-spectrum of the reference signal is calculated in the 
same way: 
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The cross-spectrum is computed as a multiplication between 
the Fourier transform of the reference signal and the 
corresponding complex conjugate of signal’s Fourier transform. 
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It is also possible to calculate the "backwards" cross-spectrum: 
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Frequency response function is simply the cross-spectrum 
divided by the auto-spectrum of the reference signal: 
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Alternatively, it is possible to calculate the FRF as the signal 
auto-spectrum divided by the cross-spectrum: 
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If the frequency response function is calculated as H1 
approach, the processing can suppress the noise of output 
signal y and if the function is calculated in a H2 way, the noise 
in the input signal is supressed. In the case, when it is supposed 
that both signals are affected by the noise on a comparable 
level, the "H3" is computed as a geometrical average of H1 and 
H2. 

)(2)(1)(3 fHfHfH   (7) 

 

 

Figure 2. Sample's mesh with attached accelerometer and laser located 
at the selected measurement point. 

The first step is to draw a mesh on a studied object. In this 
demonstration task, the number of 164 measured points is 
defined on the sample, the positions of the points reflect the 
sample’s geometry. Using 6 bolts, the sample was fastened to 
the shaker and an accelerometer was glued onto the 
appropriate point in the center of this attachment. This 
accelerometer measures the reference signal and remains in 
the same position during all of 164 frequency response 
functions measurements. The output signal was measured 
using the laser vibrometer. The both signals are processed in 
the signal analyser BK 3560C and Pulse LabShop software. 

Because the signal from the laser is delayed by 1,28 ms, this 
time must be added also to the accelerometer channel (good 
synchronization is a key preposition of this kind of 
measurement). The analyser also generates a white noise signal 
for the structure’s excitation. This signal is sent to the amplifier 
and the shaker’s coil is powered. 
White noise is a commonly used measurement signal, which 
has theoretically infinite frequency range. Practically it must be 
reduced to some finite range, in the measurement presented in 
this paper, the frequency span was 12.8 kHz. Another testing 
signals can also be used to identify various systems. The 
simplest one is sine testing signal, another are: swept sine, 
impulse, step, spread spectrum signal [Vala 2016], [Proto 
2016]. 
 

 

Figure 3. Measurement chain 

Frequency response functions were measured in the range of 
6.4 kHz. Sampling frequency is 2.56 times greater, which is 
16 384 samples per second. This satisfies the Nyquist–Shannon 
sampling theorem with a suitable reserve. The power of two 
number is eligible for Fast Fourier transform used later. The 
chart consisted of 1600 bars, which means that the block were 
4096 samples long (2.56 times more); it corresponds to 250 ms. 
FRFs were computed as an average from 100 blocks. 
In next figures, there are examples of spectra and FRF, which 
were obtained during the measurement of point number 88. 
Auto-spectra (Fig. 4) express which frequencies are present in 
the signal. Several frequencies in laser signal are dominant; it 
can be said, that these are the frequencies at which the sample 
tends to vibrate. Auto-spectra are real numbers, while the 
cross-spectrum is a sort of complex numbers and brings the 
information of the phase (Fig. 5) FRF includes two information 
because these functions are complex. Several approaches how 
to graphically demonstrate this FRF exists, but probably most 
often the magnitude and the phase both depending on the 
frequency are depicted. In this case the magnitude part shows 
how many times the output’s amplitude is greater than the 
input’s amplitude at selected frequency. However, for the 
purpose od ODS, the imaginary part (Fig. 7) is the most 
important one and is used for the illustration of the shape. 
FRFs are presented for the purpose of ODS visualization in this 
paper, but these can be found in many more applications such 
are modal analysis [Maia 1997], [Agneni 2004], [Agneni 2006] 
or is a part in the design in popular passive and active vibration 
control [Wrona 2016A], [Wrona 2016B], [Wrona 2016C]. 
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Figure 4. Auto-spectra of measured signals 

 

 

Figure 5. Cross-spectrum between measured signals 

 

 

Figure 6. Frequency response function – magnitude and phase 

 

 

Figure 7. Frequency response function – real and imaginary part 
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3 DEFLECTION SHAPES 

In application presented in this paper, operating deflection 
shapes will be extracted from imaginary parts of measured 
response functions. The relationship between FRFs measured 
on a laboratory sample and final deflection shape is best to 
show on an example. Let’s say, we want to study the deflection 
shape of the sample during the frequency of 1212 Hz. We will 
focus on the measurement point number 88, whose FRF was 
captured and described in the previous chapter. The value of 
imaginary part at the frequency of 1212 Hz is approximately -
12. This number is placed into a mesh grid as a third value in a 
3D surface plot. While this process is repeated for all measured 
points, the final shape for 1212 Hz is acquired.  

 

 

Figure 8. The relationship between measured FRF and the operating 
deflection shape 

4 ODS APPLICATION 

Graphical user interface was designed to visualize the 
measured data. This application enables to import measured 
FRFs saved as text files in ASCII format. These functions can be 
displayed as magnitude, phase, real and imaginary part. The 
selection of displayed functions is also implemented and is 
accessible through context menu. The main part of GUI is the 
visualization of the deflection shape according to the selected 
frequency. This shape can be animated, and the video can be 
saved in an avi file.  

 

 

Figure 9. ODS application GUI preview 

5 EXPERIMENTAL RESULTS 

Results acquired on a laboratory plant are concluded in this 
chapter in a graphical form. Figures depict ODSs at a given 
frequency. These illustrations enable to understand which 
places on the laboratory samples have vibrationally risky 
behaviour and which frequencies are connected to these 
problems. For example, if we look at the Figure 12, which 
illustrates the shape at the frequency of 1220 Hz, there can be 

seen, that the left corner, right edge and the area on the right 
side have the highest relative amplitudes. 

 

 

Figure 10. Shape at 684 Hz 

 

 

Figure 11. Shape at 952 Hz 

 

 

 

Figure 12. Shape at 1220 Hz 

 

 

Figure 13. Shape at 1704 Hz 
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Figure 14. Shape at 2576 Hz 

 

 

Figure 15. Shape at 2740 Hz 

6 CONCLUSIONS 

This paper presents a laboratory task designed for operating 
deflection shape processing. The mathematical procedure used 
for measuring frequency response functions was introduced 
together with a measurement chain for the diagnostics of these 
functions. Laboratory equipment included a vibration shaker 
with its signal amplifier, signal analyser and signal processing 
software, piezoelectric accelerometer and Doppler laser 
vibrometer. The relation between frequency response 
functions and operating deflection shape was explained. A 
special application designed for the visualization of measured 
shapes was also presented and finally the experimental results 
obtained on a laboratory sample are shown. 

The main goal of this paper is to simply demonstrate the 
acquiring operating deflection shapes in several simple steps: 
measurement FRFs on a laboratory sample, transferring 
imaginary parts onto a mesh and visualize results. 
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