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When designing lattice structures, or even structures in general, 
standard profiles are often used. These are profiles of I, U, T, L, 
SHS, RHS, CHS, EHS shapes, etc. All the basic formulas for 
stiffness and strength calculations are known for standard used 
profile shapes. However, in established practice there are no 
approaches for simply optimization or for evaluating the stability 
of profiles. This paper deals with a detailed analysis of two SW 
tools for structural design of profiles, considering its stability and 
enabling shape optimization for the most efficient use of the 
material. Both previously mentioned tools are based on the 
theory of prof. Ashby but each of them is handled in a slightly 
different way. The first tool works with purely analytical 
formulas and enables profile evaluation and manual 
optimization. The second tool is based on analytical formulas, 
but uses numerical solvers and allows full profile optimization. 
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1 INTRODUCTION 

In both mechanical engineering and civil engineering, structures 
(e.g. lattice construction) are often designed from standard 
profiles. All the basic formulas for stiffness and strength 
calculations are known for standard used profile shapes (I, U, T, 
L, SHS, RHS, CHS, EHS etc.). For these calculations there is  a large 
number of calculators.. However, in established practice there 
are no approaches for optimization or for evaluating the stability 
of profiles (now let's omit FEM analysis, topology optimization, 
topography optimization and other types of FEM optimizations). 
Where : 
SHS = Square Hollow Section, RHS = Rectangular Hollow Sections  
CHS = Circular Hollow Section, EHS = Elliptical Hollow Section 
 
This paper deals with a detailed analysis of two SW tools for 
structural design of profiles, considering its stability and enabling 
shape optimization for the most efficient use of the material. 
Both mentioned tools are based on the theory of prof. Ashby 
[Ashby 2011], [Ashby 2013] but each is handled in a slightly 
different way. The first tool is created in the MS Excel 2016 
environment, works with purely analytical formulas and enables 
profile evaluation and manual optimization. The second tool is 
based on analytical formulas but uses numerical solvers and also 
allows full profile optimization according to specified 
requirements. 
Another example of the application of prof. Ashby’s theory is 
given in paper [Florian 2017]. This paper deals with connection 
of prof. Ashby’s theory with optimization interface of software 
ANSYS. This link allows solving complicated multi-criterial 
problems that cannot be solved analytically. 

2 INTRODUCTION TO THEORY (PROF. ASHBY’S) 

Mechanical and civil structures often consist of basic 
(standardized) profiles, which are, for example, ties/bars loaded 
by tension, shafts loaded by torsion, columns loaded by 
pressure, beams loaded to bend, whether beams one-end-fixed 
or on two supports, etc. Suitable shapes according to the way of 
their load are generally known for these standard applications.  
In the case of ties/bars loaded by simple tension (in the cross-
sectional axis), it essentially only depends on the cross-sectional 
area of the profile. Whether it is a round or square rod, a tube, 
or an open profile has no effect on stiffness or strength. 
However, a different situation already occurs with other load 
methods. In the case of columns loaded by compression, the 
cross-sectional area of the profile is also essential for their 
stiffness and strength, however, it must be checked here 
whether a loss of stability due to buckling can occur. In this case, 
the well-known Euler equation for the critical force applies (1). 
 

𝐹𝐶 =
𝑛2 𝜋2 𝐸 𝐼𝑚𝑖𝑛 

𝐿2   [𝑁]  (1) 

 
Where: Fc is a critical force [N], n is a constant that depends on 
the end-constraints [-]; E is a Young’s modulus of the material of 
the section [GPa];  Imin is a smallest second moment of the area 
[m4], L is a column length [m]. 
 
Euler equation for the critical force (1) takes into account the 
minimum second moment of area of cross-section with respect 
to the length of the beam but this may not always be sufficient 
to assess the stability of thin-walled hollow sections, as it is 
possible to design a beam that will have a large second moment 
of area of cross-section but have a very thin, unstable wall (see 
below). Furthermore, Tetmajer's theory which defines buckling 
in the plasticity, is often used in technical practice. In the case of 
steel structures, we are well below the limit of elasticity, so this 
theory is not discussed further here. 
When loaded with a pure torsion it is usually advantageous to 
use circular hollow sections. Circular hollow sections are 
rotationally symmetrical about their axis, but mainly have a very 
good ratio between the cross-sectional area and the torsional 
sectional modulus. 
 

cross section 
shape 

𝑨 [𝒎𝟐] 𝑸 [𝒎𝟑]  

round bar 
𝜋 𝐷2

4
 

𝜋 𝐷3

16
 (2;3) 

CHS = Circular 
Hollow Section 

𝜋 (𝐷2 − 𝑑2)

4
 

𝜋 (𝐷4 − 𝑑4)

16
 (4;5) 

Where: A - Cross-sectional area of the section [m2], Q - Torsional 
section modulus [m3], D - large diameter [m], d - small diam. [m] 
 
The farther the material is from the profile axis, the more it 
contributes to the increase of the torsional section modulus 
(towards the cross-sectional area (2) and (4) ), which results from 
the mentioned formulas (3) and (5). That means that a better 
ratio of cross-section area to the torsional section modulus is 
achieved by using a large-diameter tube and a thin wall. In 
theory, we could be approaching the extreme with a pipe of 
infinite diameter with infinitesimal wall thickness. However, 
such a pipe (e.g. an aluminium foil pipe) would be highly unstable 
as the slightest other load would result in loss of stability and 
collapse of the pipe wall. A  breach of stability would be caused 
by the sheer weight of the pipe in such extreme cases. 
A similar situation occurs with profiles loaded by bending. More 
precisely, the further the material is from the axis of the profile 
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perpendicular to the load force, the more it contributes to the 
expansion of the second moment of area of the section (I [m4]). 
 I-shaped profiles or RHS profiles are appropriate for these 
applications. The stands that connect the material above and 
below the neutral axis are necessary to hold the "carrier 
material" in the correct position, and to ensure the stability of 
the profile, but contribute at least to increasing the second 
moment of area (Fig. 1). 

 

Figure 1. a) A description of the efficiency of material use on the real I-
profile, b) “ideal” I-profile for the most efficient use of the material, 

without taking stability into account 

cross 
section 
shape 

𝑨 
[𝒎𝟐] 

𝑰  [𝒎𝟒] 𝒁 [𝒎𝟑]  

square 
bar 

𝐵0
2 

𝐵0
4

12
 

𝐵0
3

6
 (6;7;8) 

 
rectan-
gular 
bar 

𝐵𝐻 
𝐵𝐻3

12
 

𝐵𝐻2

6
 (9;10;11) 

RHS 
𝐵𝐻 
−𝑏ℎ 

𝐵𝐻3 − 𝑏ℎ3

12
 

𝐵𝐻3 − 𝑏ℎ3

6 𝐻
 

 
(12;13;14) 

EHS 
𝜋

4
(𝐵𝐻 

−𝑏ℎ) 

𝜋(𝐵𝐻3 − 𝑏ℎ3)

64
 

𝜋(𝐵𝐻3 − 𝑏ℎ3)

32 𝐻
 (15;16;17) 

Where: A - Cross-sectional area of the section [m2], I - Second 
moment of area of the section [m4], Z - Section modulus of the 
section [m3], B0 - edge length for the square reference section 
[m], H - external height [m], B - external width [m], h - internal 
height [m], b - internal width [m] 
 
Thus, in the case of profiles loaded with torsion and bending, it 
is generally known which profile shapes are suitable for the 
load (Fig. 2), and how changes in dimensions for a given shape 
affect changes in second moment of area values (6) to (17) and 
stability. 
However, there are no general rules for finding optimal 
boundaries between these parameters, i.e. designing a profile 
to use the material as efficiently as possible (i.e. using as little 
material as possible) while ensuring structural stability. 

 

Figure 2. Common modes of loading and the section shapes that are 
chosen to support them [Ashby 2011, pp.247] 

This problem is solved by prof. Ashby's theory [ASHBY 2011], 
which introduces the so-called Shape factor, a dimensionless 
quantity that takes into account shape efficiency. The form 
factor for elastic bend (18) is defined as the ratio of the bending 
stiffness of the profile considered (S) to the bending stiffness 
for the square reference section (S0), which is considered to be 
a square bar with side width b0. 
 

𝜙𝐵
𝑒 =

𝑆

𝑆0
  [−] (18) 

 

Where: 𝜙𝐵
𝑒  - Macro shape factor for elastic bending deflection 

[-], S - Bending stiffness [N/m], S0 - Bending stiffness for the 
square reference section [N/m] 
 
If we put in (18) [Ashby 2011, pp.248] the formula for bending 
stiffness (S [N/m]) (19) and after IO, which is the second moment 
of area for the square reference section, we substitute a spaced 
formula (20). And if we consider comparing beams from the 
same material, we get an adjusted formula (21). This newly 
obtained formula is generally valid for comparing all different 
beam shapes from the same material. We can also see from the 
formula (21) that the shape factor does not depend on the 
absolute size, but only on the ratio of the second moment of 
area, which is visualized on Fig. 3. The shape factor de facto 
indicates the number of times the cut beam is stiffer against a 
square bar of the same cross-sectional area (square reference 
section). 
 

𝑆 =
𝐸 𝐼

𝐿2  [ 
𝑁

𝑚
 ] (19) 

 

𝐼𝑂 =
𝑏0

4

12
=

𝐴2

12
 [𝑚4]  (20) 

 

𝜙𝐵
𝑒 =

𝑆

𝑆0
=

𝐸 𝐼

𝐸 𝐼0
=

12 𝐼

𝐴2
[−]   (21) 

 

Where: 𝜙𝐵
𝑒  - Macro shape factor for elastic bending deflection 

[-], S - Bending stiffness [N/m], S0 - Bending stiffness for the 
square reference section [N/m], I0 - Second moment of area of 
the square reference section [m4] 
 

 

Figure 3. A set of rectangular sections, I-sections and tubes in which 
members of a set differ in size but not in shape [Ashby 2011, pp.251] 

The Shape factor for onset of plasticity or failure in bending is 
based on the ratios of the Section modulus of the section 
(Z and Z0 [m3]) and the resulting formula is expressed as (22) 
[ASHBY 2011, pp.254]. 
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𝜙𝐵
𝑓

=
𝑍

𝑍0
=

6 𝑍

𝐴
3
2

 [−]  (22) 

 

Where: 𝜙𝐵
𝑓

 - Macro shape factor for onset of plasticity or failure 

in bending [-], Z - Section modulus of the section [m3], Z0 - Section 
modulus of the square reference section [m3] 
 
Similarly, the above applies to the shape factor for elastic 
torsional deflection, where the final formula (23) is obtained. 
See more - theory of prof. Ashby [ASHBY 2011, pp.251]. 
 

𝜙𝑇
𝑒 =

𝑆𝑇

𝑆𝑇0
=

𝐾

𝐾0
= 7.14

𝐾

𝐴2  [−]   (23) 

 

Where: 𝜙𝑇
𝑒  - Macro shape factor for elastic torsional deflection 

[-], K - Torsional moment of area [m4], K0 - Torsional moment of 
area for the square reference section [m3], ST - Torsional stiffness 
[N.m], ST0 - Torsional stiffness for the square reference section 
[N.m] 
 
Furthermore, as the formula above the formula for the shape 
factor for onset of plasticity or failure in torsion (24) is given. 
See more - theory of prof. Ashby [ASHBY 2011, pp.256]. 
 

𝜙𝑇
𝑓

=
𝑄

𝑄0
= 4.8

𝑄

𝐴
3
2

 [−]  (24) 

 

Where: 𝜙𝑇
𝑓

 - Macro shape factor for onset of plasticity or failure 

in torsion [-], Q - Torsional section modulus [m3], Q0 - Torsional 
section modulus for the square reference section [m3] 
 
According to the theory of prof. Ashby, the upper limits of the 
Shape Factors for the most commonly used materials were 
further determined, which are listed in Tab. 1. These limits have 
been set with regard to production technology and functionality. 
E.g. I-profile with the same dimensions as, for example, steel is 
not produced from wood. Although we would be able to produce 
a thin-walled profile from wood, such a profile will not be usable 
in practice. Thus, we point to the reason why in practice steel 
structures are made of different shaped profiles of the type: I, U, 
L, etc., but for wooden structures a typical crossbeam a beam 
with a rectangular cross-section (loaded in the direction 
perpendicular to the shorter side of the rectangle) and not e.g. 
I - profile or hollow sections. 
 

material (𝝓𝑩
𝒆 )𝑴𝑨𝑿 (𝝓𝑻

𝒆 )𝑴𝑨𝑿 (𝝓𝑩
𝒇

)
𝑴𝑨𝑿

 (𝝓𝑻
𝒇

)
𝑴𝑨𝑿

 

structural 
steel 

65 25 13 7 

EN AW 
6061 

44 31 10 8 

GFRP/CFRP 39 26 9 7 
Polymers 12 8 5 4 
Woods 5 1 3 1 
elastomers <6 3 - - 

Table 1. Empirical upper limits for the shape factors – entire table [-] 
[ASHBY 2011, pp.258] 

However, the unique idea of this whole theory (which does not 
occur in other theories) is that limit values can be set for 
individual shape factors, which guarantee that compliance with 
them will not result in a limitation due to loss of stability (so-
called Limits imposed by local buckling). 
Formulas (25) and (26) [ASHBY 2011, pp.260] are empirically 
determined formulas, which indicate the limits that should not 
be exceeded for a given material, otherwise there is a risk of loss 

of beam stability, although according to analytical calculations 
will comply. 
 

(𝜙𝐵
𝑒 )𝑀𝐴𝑋 ≈ 2.3 (

𝐸

𝜎𝑓
)

1

2
  [−]  (25) 

 

(𝜙𝐵
𝑓

)
𝑀𝐴𝑋

≈ √(𝜙𝐵
𝑒)𝑀𝐴𝑋   [−]  (26) 

 
Where: 𝜎𝑓 - Yield or failure strength of the material of the section 

[MPa], (𝜙𝐵
𝑒 )𝑀𝐴𝑋 and (𝜙𝐵

𝑓
)

𝑀𝐴𝑋
 [-] -  Upper limits on shape 

efficiency.  

3 TOOL NO. 1 - CALCULATOR IN MS EXCEL 

3.1 Basic information and principles 

This SW tool is used to easily determine the appropriate 
combination of cross-sectional shape, dimensions, and beam 
material for specific selected boundary conditions. The main 
benefit of this SW tool over common calculators is that the 
stability of the profiles is also taken into account and it is possible 
to compare several materials at once. Taking into account the 
stability of the profiles, a simple analytical solution of the beam 
on the strut is not meant here. Based on the Shape factors, it is 
verified whether the proposed beams have suitable dimensions 
and a sufficiently thick wall relative to their basic dimensions, so 
that the beam wall cannot collapse (lose stability) under bending 
or torsional loading, but the beams are not oversized. In addition 
to conventional formulas for stiffness and strength, the 
calculator is largely based on the theory of prof. Ashby [Ashby 
2011], [Ashby 2013]. The SW tool is created in MS Excel 2016. 

The calculator can currently be used for beams on two supports, 
or one-end-fixed beams that are loaded by bending or torsion. 
The calculator works with two basic shapes of profile cross-
section, namely a RHS = rectangular hollow section (a special 
case of which is a SHS = square hollow section) and an 
EHS = elliptical hollow section (of which a CHS = circular hollow 
section is a special case). 

When using this SW tool, it is possible to aim for the lowest 
possible weight, fulfilment of the required deflection or torsion, 
always in compliance with other specified conditions, such as the 
minimum required safety against yield strength (or against 
tensile (ultimate) strength) and maximum permissible 
dimensions. Using the tool, the user performs de facto manual 
optimization of parameters, where he has immediate feedback 
on the effect of the change on the results. 

3.2 Description of the organ structure of the SW tool 

The basis of this SW tool is a table for entering material 
parameters of the considered materials (Fig.4). and table for 
defining input boundary conditions (Fig.5). To table (Fig.4) it is 
necessary to enter the required material parameters. In the 
table (Fig.5) it is necessary to select the boundary conditions of 
the calculation, such as: method of loading, type of beam, 
loading force, limit dimensions, etc. 

Another part of the calculator are the works-tables (Fig.6), the 
number of which is equal to the multiple of the number of 
compared materials and the number of cross-sectional shapes, 
and the user performs his own manual optimization here. The 
principle of function, resp. optimization will be explained below. 

The last part is the results table (Fig.7), which summarizes the 
results for all compared combinations of shapes and materials, 
where the user can quickly evaluate the output data and 
compare them with each other. 
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3.3 Description of the function structure of the SW tool 

The user can choose the default materials or can define his own 
material in the table with material parameters (Fig.4). As 
mentioned above, when designing a beam loaded by bending, it 
is necessary to enter the parameters: density (ρ [kg/m3]), 
Young’s modulus of the material (E [GPa]), yield strength (𝝈𝒚 

[MPa]) and/or tensile (ultimate) strength (𝝈𝒕𝒔 [MPa]),  and in the 
case of torsional calculation also the shear modulus (G [GPa]). 
Based on the entered values, according to (29) and (31), the limit 
shape factors for buckling prevention are calculated. 

 

Figure 4. Material input table 

Furthermore, in the table with boundary conditions (Fig.5) the 
user can select (from the drop-down menu) the method of 
loading (bending / torsion) and the type of beam (on two 
supports or one-end-fixed) and enter numerical values 
manually: loading force Fx [N], maximum permissible dimensions 
Xmax [mm] a Ymax [mm], total length L [mm] and maximum 
permissible weight mmax [kg].  

Other optional parameters are: minimum required safety 
against yield strength, max. permissible deflection (in case of 
bending), or max. permissible twist (in case of torsion). When the 
user fills in these optional data, it can help him, for example, 
when comparing or evaluating the results, because the SW takes 
into account compliance with or non-compliance with the 
specified limits by conditional formatting. 

 

Figure 5. Input table of profile parameters and load method 

After entering both input tables, it is possible to move to the 
work tables (Fig.6). Work table for each material and shape 
combination consists of two parts. The left part is always fully 
automatically calculated from the specified boundary conditions 
and serves as a kind of guide in which areas the user can move 
approximately. 

The values given in the left part are always based on the input 
maximum permissible dimensions Xmax a Ymax and for these 
dimensions, the upper and lower limits of the profile wall 
thickness are further calculated.. 

The maximum possible wall thickness is determined on the basis 
of the maximum dimensions Xmax a Ymax and maximum 
permissible weight mmax (if with dimensions Xmax a Ymax has been 
exceeded tmax [mm], thus the maximum permissible weight will 
be exceeded!). Formulas for tmax are derived in (27) and (28). To 
distinguish the formulas used designation: RHS = Rectangular 
Hollow Sections and EHS = Elliptical Hollow Section. 

 

 𝒕𝐦𝐚𝐱  (𝑬𝑯𝑺) =
1

4
∙ [(𝑥 + 𝑦) − √(𝑥 + 𝑦)2 − (

16

𝜋
 ∙ 𝐴𝑚𝑎𝑥) ]  [𝑚]  (27) 

 𝒕𝐦𝐚𝐱  (𝑹𝑯𝑺) =
1

4
∙ [(𝑥 + 𝑦) − √(𝑥 + 𝑦)2 − (4 ∙ 𝐴𝑚𝑎𝑥) ]  [𝑚]  (28) 

 

Where: Amax is the maximum possible cross - sectional area [m2] 
(based on the maximum permissible weight and length of the 
beam). 

When adding the parameters for EHS to (22) and we know 
formula for upper limit of shape factor (26), we get formula for 
shape factor ΦB

f
(EHS) [-] (29). Using ΦB

f
(EHS) and ΦB

f
max [-] we can 

express the minimum possible wall thickness tmin(EHS) (30), which 
guarantees us the stability of the profile (if tmin [-] is exceeded 
with these dimensions Xmax and Ymax, then there will be a risk of 
loss of profile stability). 

 

𝜙𝐵 (𝐸𝐻𝑆)
𝑓

=
𝟑

𝟐√𝝅
∙ √

𝑦

𝟐

𝑡
∙

1+3
𝑥

𝑦

(1+
𝑥

𝑦
)

3
2

     ≤ 𝜙𝐵  𝑀𝐴𝑋
𝑓

  [−]  (29) 

 

→  𝒕𝐦𝐢𝐧  (𝑬𝑯𝑺) =
𝟗 𝑦2 (𝑦+3𝑥)2

𝟖𝝅 (𝜙𝐵 𝑀𝐴𝑋
𝑓

)
2

∙ (𝑥+𝑦)3
  [𝑚]  (30) 

 

The same procedure can be applied to a RHS and from formulas 
(31) we can express the minimum possible wall thickness tmin (RHS) 
(32). 

 

𝜙𝐵 (𝑅𝐻𝑆)
𝑓

=
𝟏

√𝟐
∙ √

𝑦

𝑡
∙

1+3
𝑥

𝑦

(1+
𝑥

𝑦
)

3
2

     ≤ 𝜙𝐵  𝑀𝐴𝑋
𝑓

  [−]  (31) 

 

→ 𝒕𝒎𝒊𝒏 (𝑹𝑯𝑺) =
𝑦2 (𝑦+3𝑥)2

2∙ (𝜙𝐵  𝑀𝐴𝑋
𝑓

)
2

∙ (𝑥+𝑦)3
 [𝑚]  (32) 

 

The remaining values in the relevant column are already 
calculated for the specified wall thickness according to the 
analytical formulas. For example, formulas for the second 
moment of area of the section for elliptical (33) and rectangular 
(34) hollow sections are given: 

 

 𝑰(𝑬𝑯𝑺) =
𝜋

64
∙ {𝑥 ∙ 𝑦3 − [(𝑥 − 2𝑡) ∙ (𝑦 − 2𝑡)3]}    [𝑚4]  (33) 

 

 𝑰(𝑹𝑯𝑺) =
1

12
∙ {𝑥 ∙ 𝑦3 − [(𝑥 − 2𝑡) ∙ (𝑦 − 2𝑡)3]}   [𝑚4]  (34) 

 

From the formulas for second moments of area (33) and (34) it 
is then possible to express the section modulus of the section (Z)  
(35) and (36): 
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 𝒁(𝑬𝑯𝑺) =
𝜋

32𝑦
∙ {𝑥 ∙ 𝑦3 − [(𝑥 − 2𝑡) ∙ (𝑦 − 2𝑡)3]}  [𝑚4]  (35) 

 

 𝒁(𝑹𝑯𝑺) =
1

6𝑦
∙ {𝑥 ∙ 𝑦3 − [(𝑥 − 2𝑡) ∙ (𝑦 − 2𝑡)3]}  [𝑚4]  (36) 

 

The values in the left part of the table depend purely on the two 
input tables, and do not change as part of the manual 
optimization performed in the right part. 

In the right part of the table, the user then performs his own 
manual profile optimization. The user has the option to correct 
the Xcorr [mm], Ycorr [mm] and tcorr [mm] values in this part of 
table. For the Xcorr and Ycorr parameters, the user has the option 
to select any values that do not exceed the input values Xmax and 
Ymax. 

According to the selected values of the Xcorr and Ycorr parameters, 
the upper and lower limits of the tcorr parameter are 
recalculated. 

The limit values tcorr are determined in the same way as in the 
left table, with the only difference that it is based on the 
corrected values Xcorr and Ycorr and not on the limit values Xmax 
and Ymax. 

That is, these are the limit values (lower and upper) of the tcorr 
parameter, according to the corrected values of the Xcorr and Ycorr 
parameters. 

After entering the values the user has the option to evaluate the 
entered profile according to the values in the outputs section. 
Here they are calculated for the selected profile and given 
boundary conditions: safety against yield strength (only if the 
yield strength is not specified, the safety against tensile ultimate 
strength is evaluated), safety against both shape factors, real 
deflection or twist and real weight. 

At the bottom of the table are then the values of the parameters 
from which the above outputs are calculated. These values are 
not necessary for the evaluation itself, but they can be used, for 
example, in comparison, or to visualize what has an effect on the 
final results. 

Note: It is common for shape factors that safety values 
(especially for the shape factors for onset of plasticity or failure) 
do not reach high values. This is not a yield strength safety 
equivalent and should not be considered as such. That is, it is not 
appropriate to require high safety, as can be the case with safety 
against yield strength. A value of 1.1 can easily be a sufficient 
safety factor for the shape factor ΦB

f. 

 

After entering all the values, the user has the opportunity to 
evaluate the outputs described above and, based on this, 
repeatedly change the values of Xcorr, Ycorr and tcorr until he 
reaches some sub-optimal solution. 

The precondition for such a sub-optimal solution is that all the 
mentioned safety features (possibly also deflection and twisting) 
approach the set limits to the limit and the lowest possible 
weight is achieved. 

 

 

 

Figure 6. Calculated limit values on the left side, corrected on the right 
side  

This manual profile optimization procedure should be repeated 
for all material and shape combinations. 

After performing all optimizations, it is possible to proceed to the 
table of results (Fig.7), where all important compared outputs 
are summarized, i.e. dimensions, safety, deflection, or twist and 
weight. Based on the summarized results, the user evaluates and 
selects the resulting beam parameters. When evaluating, it is 
appropriate, in addition to the best result, to evaluate the price 
of the material and the price of the profile production 
technology. 

Note 1: This means that if the profile of aluminium or PEEK is 1% 
better than the steel structure, which will be several times 
cheaper, it is appropriate to take this into account. 

Note 2: If it is a product made of plastic, or e.g. foam, machined 
or cast product, the user can choose any size. When it comes to 
designing a structure from standardized profiles made of 
aluminium alloy or steel, it is, of course, appropriate to take into 
account the range sold when choosing the dimensions. 

 

Figure 7. The resulting table with overviews of all materials and shapes 
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4 TOOL NO. 2 - NUMERIC OPTIMIZER (“TOY”) 

4.1 Introduction of the program 

The TOY program is a tutorial program designed to practice 
material selection and beam profile optimization. The program 
is focused on the theory of assessing the material performance 
and the shape of the profile created by prof. Ashby. The aim of 
the program is to simplify the calculations of the values of 
material indicators, shape factors or their combinations. Along 
with these results, the program provides information on weight, 
amount of reduced stress or displacement. In addition to a 
simple check calculation, the program offers advanced functions 
intended to find the optimal dimensions for a given profile shape 
or to design dimensions and shapes for general input. 
The program was created to implement advanced features for 
teaching profile optimization. This functionality is very 
important, because in the bachelor's program, in addition to 
simple calculation, it is necessary to teach the principles of 
structural optimization. Therefore, it is necessary to provide 
students a powerful tool that will allow them to work with the 
parameters of the structure and at the same time provide 
information about the useful properties of the proposed 
structure. 

4.2 Initial assumption 

The choice of a platform for creating a tutorial program in an 
academic environment is subject to specific circumstances. The 
problem is fixed limit of financial resources (unlike human 
resources), which leads to solution based on non-commercial 
basis. The following criteria were considered for the creation of 
the TOY program: 

 development environment free of restrictive license terms 
o important for distribution in the academic environment 

 cost-effectiveness for the university. The program and its 
distribution is funded by a grant (financial resources that 
cannot be increased) 
o developer costs 
o program distribution costs 
o the cost of a license to enable students to use the 

program 

 possibility to run on the user's PC without restrictions 

 support for various operating systems (Windows, Android, 
MacOS, Linux) 

 support for various hardware platforms (x86-64, ARM, Apple 
Silicon, future platforms) 

 easy creation of custom scripts 

 scripting for automation of internal processes in the program 

 ability to work with a higher degree of abstraction, making 
the code easier to maintain 

 built-in advanced functions - linear algebra, solver of non-
linear equations and function minimum finder. It is essential 
for the implementation of something like 'find the best 
solution'. 

 
Due to the above requirements, an open-source solution was 
chosen. This eliminates the cost of acquiring a development 
environment and licensing to users. After considering several 
variants, it was decided to develop the application using the 
Python programming language and freely available libraries 
(Numpy, Scipy, Tkinter). 
 
It seems appropriate to use an online platform, however, it is 
necessary to analyse the implementation and provide resources 
for running and administering the web server. 
 
 

4.3 Description of the organ structure of the TOY 

 

Figure 8. TOY layout 

The TOY program consists of two parts, a graphical user interface 
and a task solver. The graphical interface layout is arranged in a 
grid by Tkinter library. The user interface consists of radio 
buttons, which can be used to select the type of task (check 
calculation, best solution for specified aspect ratios), beam 
support types (simply supported or fixed) and beam cross-
section shape. 
 

 

Figure 9. TOY solution parameter input window 

The kernel is used to solve a user-specified task. It consists of a 
set of memory fields for input data and procedures that perform 
calculations and control the flow of data between memory cells. 
TOY uses a single unified kernel to solve all types of tasks. 
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Figure 10. TOY result window 

 

4.4 Description of organ structure of the TOY 

 

 

Figure 11. TOY block diagram 

The graphical user interface was created using the Tkinter 
library. The introductory window allows the user to select the 
type of job, the type of beam support and the shape of the cross 
section. After the user selects from the options offered by the 
home screen, he presses the Refresh button. The window is then 
redrawn and enlarged, the task option is located in the new 
window on the top of the window below the bar. The left half of 
the window is used to enter the parameters of the task. Job 
parameters are entered in text fields. When all required fields 
are filled in, the user can press the Enter key. Pressing the Enter 
key activates the computer kernel. 
After entering the command to solve the task, the computing 
kernel starts. It first copies the data from the GUI text boxes to 
its memory. In memory, data is divided according to its meaning. 
It then starts processing data using predefined procedures. 
Procedures are very simple functions (calculation of cross-
sectional area and quadratic moment, maximum displacement, 
etc.), each procedure performs only a specific activity. Each 
procedure has the ability to run a different procedure. There are 
3 levels of procedures used in the kernel. At the lowest level, 
individual calculation tasks are performed, higher layers take 
care of the continuity of the procedure (calculation of cross-
sectional characteristics → stress, deflection → output 
processing). The top layer is a macro that determines how the 
program should work. The memory also includes variables that 
determine the type of job, beam placement, and cross-sectional 
shape. 
The kernel was designed to be able to solve different types of 
tasks in one configuration. Simple procedures on the lowest 
layer can be freely run on higher layers on demand. Thanks to 
this, new functions can be added to the program relatively 
quickly.  
The occurrence of duplicates in case if each type of process was 
performed by different code is limited alongside with it. 
 
The kernel can handle 3 types of tasks: 
    1. Control calculation, where material indicators and shape 
factors are calculated for beam parameters specified by user. 
    2. Optimization of cross-section shape. In this case, the user 
enters the aspect ratios of cross-section dimensions, the 
program recommends optimal dimensions according user 
defined aspect ratios. 
    3. Optimal solution. The user enters the limits of cross-section 
dimension parameters, the program tries to design the optimal 
dimensions and shape within these limits. 
 
At the end of the calculation, a procedure is run to perform a 
basic (incomplete) test of the results. If the results are 
considered to be correct, the kernel converts the results to a 
readable form and sends them back to the GUI. 
The output texts of the program are fully parameterized for the 
possibility of teaching foreign students. The parameters are 
arranged as a two-dimensional language-text field. This enables 
any number of languages to be added into the program. The 
program fully supports UTF-8. The description can be 
supplemented with other languages as well as any characters. 
 
The TOY program is designed to be expanded with new features. 
Unlike previously mentioned Excel program, the TOY uses more 
generalized mathematical models. An example of this approach 
is a calculation of beam deflection. Both programs calculate 
beam deflection using Euler-Bernoulli beam theory. Excel 
program uses a formula, which is analytically derived from Euler-
Bernoulli differential equation. This formula allows to calculate 
of the exact value, the parameters (support type, number of 
forces) are immutable. On the contrary, the TOY solves Euler-
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Bernoulli equation as numeric integral. Thanks to numeral 
solution, there are arrays of loads in TOY's memory, so it's easy 
to modify TOY's solver for any possible variant (statically 
indeterminate beam, asymmetrically distributed load etc.). 
Disadvantage resulting from the numerical solution is that the 
result comes with a small deviation from analytic solution given 
by numeric (finite element) solver. 

5 SAMPLE APPLICATION EXAMPLE  

Both programs were compared according to the same 
assignment (Tab. 2, Tab. 3, Fig. 12 and Fig. 14). Assignment of 
this example was beam of rectangular shape on two supports 
loaded by force in the middle. Steel S235JR was chosen as a 
material. The safety factor (against Yield strength) was set to 2.5. 
The goal is to find the lightest beam.  

Example parameters Description 

F = 3 000 N Acting force 

l = 1 500 mm Length of beam 

a = 750 mm Acting force position 

H = 100 mm Max. height of beam 

B = 100 mm Max. width of beam 

w = 10 mm Max. deflection of beam 

s = 2.5 Safety factor against Yield strength 

s (𝝓𝑩 𝒎𝒂𝒙
𝒇

) = 1 Safety factor against buckling 

Table 2. Assignment of example 

 

Material parameters Description 

E = 210 GPa Young’s modulus 

ρ = 7 850 kg/m3 Density 

σts = 360 MPa Ultimate strength 

σy = 250 MPa Yield strength 

Table 3. Parameters of steel S235JR 

 

5.1 Program Excel 

 

Figure 12. The Excel assignment 

The Excel program works on process trial and error method 
where finding the best solution takes user approximately about 
5 minutes.  

For entering values the best solution seems to be the profile with 
width 41 mm, height 100 mm and wall thickness 1.61 mm. The 
mass of this profile is 5.224 kg and the deflection 1.785 mm. All 
conditions have been met (Figure 13). 

 

Figure 13. Results of excel 

 

5.2 Program TOY 

 

Figure 14. The TOY assignment 

 

 

Figure 15. Results of TOY 
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Program TOY makes automatic design of profile based on those 
entered values. The calculation takes several seconds. 

For entering values the best result seems to be the profile with 
width 45.21 mm, height 98.45 mm and wall thickness 1.577 mm. 
The mass of this profile is 5.219 kg and the deflection 1.786 mm 
(Figure 15). 

 

 

Figure 16. Comparison of results from TOY in excel program 

If we check results from the TOY program in the Excel (Figure 16) 
program we can find that the TOY program did not fulfil stability 

(𝜙𝐵
𝑓

) however the result is very close. And the reason is that the 
TOY program works based on numerical solving whereas the 
Excel works based on analytical solving. 

Using a numerical solver, a large number of variants of profile 
dimensions were calculated. Figure 17 shows all the investigated 
solutions graphically (different ratios of outer width and height 
of the profile). 

A dark area in the Figure 17 highlights a set of suitable solutions. 
The darker solution the smaller weight of a beam satisfying 
conditions of stress, deflection and stability. The closer the 
solution is to the black area the better. The dark area shows the 
set of best ratios of width and height of profile for assignment 
from chapter 4.  

With a numerical solution we cannot say with certainty that we 
have found the optimal solution (global minimum of the 
function). There is usually only one optimal solution and it lies 

somewhere in the black area. However, all solutions from the 
dark area can be considered good solutions (sub-optimal). 

In the Figure 17 we can also see the results of both our programs. 
Both of our solutions are located close to each other and both 
are in the middle of the dark zone.  

 

 

Figure 17. Representation of solutions 

For the example, the data for the profile width 100 mm and 
height 75 mm (the solution from the other side of the dark side.) 
were calculated. The results for this profile are shown in Figure 
18. All safety factors and deflection are met. The resulting weight 
is slightly greater than the results obtained with TOY and EXCEL. 

  

Figure 18. Results of profile 100x75x1.33 

 

6 DISCUSSION AND EVALUATION OF SW TOOLS AND RESULTS  

From the previous chapters it is obvious that we have two 
programs working on different principles with almost the same 
result. 

In both programs a user can choose what kind of shape, profile, 
material, support and load (bending or torsion) he wants to 
calculate. 

The advantage of the excel program is that the user can compare 
4 different materials of two different shapes at one moment. 
Next one is that the excel program calculates results numerically 
and the user has a possibility to see how a change of entered 
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values affects results. The disadvantage of the excel program is 
a long time of calculating, in comparison with TOY program. 

In the previous chapter there was mentioned that the TOY 

program did not fulfil stability (𝜙𝐵
𝑓

) and that is caused by the 
numerical solving method. This small inaccuracy could be 
perceived as a disadvantage but the purpose of both programs 
is to show to the user the best possible option. It is neccessary 
to find a real profile and to check it. 

7 CONCLUSIONS 

It is better to use TOY program when the user is looking for a 
quick tool for design.  On the other hand the Excel program can 
be used as a great tool for educational purposes because the 
user can see all the steps of calculation process. So it can be 
easily understood how values correspond with one another and 
how is it influencing those final results. 
Despite the differences between the programs, both of them are 
better to use than classic methods because they calculate 
moreover with stability of the profiles. 
 

FINAL NOTE 

The presented SW tools were created only for educational 
purposes. The authors of the SW tools are not responsible for 
errors or for faulty constructions created on the basis of the 
above calculations. The authors recommend to additionally 
verify the proposed structure before any real application. 
Larger number of students will put the software tools to the test 
in the near future. 
SW tools are free to download at: 
www.home.zcu.cz/~mazini/ 

ACKNOWLEDGMENTS 

This paper is based on work sponsored by the project SGS2019-
001 (The complex support of designing of technical equipment 
IV). 

REFERENCES 

[Ashby 2011] Ashby, M. F., Material Selection in Mechanical 
Design. Oxford: Butterworth-Heinemann, 2011. ISBN 978-1-
85617-663-7 
[Ashby 2013] Ashby, M. F., Shercliff, H., Cebon, D., Materials,  
Oxford: Butterworth-Heinemann, 2013. ISBN 978-0-08-097773-
7 
[Florian 2017] Florian, P., Mazinova, I., Kratochvíl, M., Hrdlicka., 
F., FEM-Aided materials selection optimization, In: MM Science 
Journal, June 2017, DOI : 10.17973/MMSJ.2017_06_201711 
 
 
 
 
 

 

 

 

 

 

 

 

CONTACTS: 

Ing. Filip Hrdlicka 
Ing. Tomas Kalina 
Ing. Martin Kratochvil 
Ing. Ivana Mazinova, Ph. D. 
University of West Bohemia, Faculty of Mechanical Engineering, 
Univerzitni 8, Plzen, 306 14, Czech Republic 
cficeriov@kks.zcu.cz , tkalina@kks.zcu.cz, kratochv@kks.zcu.cz, mazini@kks.zcu.cz 
 
 
 
 
 
 
 


