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The article deals with the development and determination of 
the uncertainty of a calibration tool for tilt sensors for the 
control of motor vehicle instability. The stability of motor 
vehicles is critical, especially when driving on inclined terrain, 
when instability and overturning of the vehicle can occur. For 
this purpose, it is necessary to install and calibrate a suitable tilt 
sensor. 
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1 INTRODUCTION  

When driving on inclined terrain, problems with sideway 
vehicle stability may occur, so along with dynamic effects, the 
influence of the vehicle's tilt angle is also an important 
parameter that needs to be monitored and evaluated (Fig. 1). It 
is based on the vehicle model and the location of the vehicle's 
centre of gravity. When the vehicle is driving slowly, it is 
sufficient to know the current tilt angle, but when driving fast, 
the dynamic effects of the vehicle's mass also have a significant 
impact. 

 

 

Figure 1. Measurement of tilt angle for detection of sideway vehicle 
instability 

Low-cost sensors are usually used to measure vehicle 
inclination, but it is necessary to calibrate and verify their 
measurement accuracy [ACT 157/2018 2018, DECREE 161/2019 
2019, DIRECTIVE 2009/34/EC 2009, DIRECTIVE 2014/32/EU 
2014, EA-4/02 1999, JCGM 100 2008, JCGM 104 2009]. For this 
verification, it is necessary to develop a tool and methodology 

for the verification of such measuring devices [Bratan 2023, 
Hroncova 2022a, Hroncova 2022b, Huston 2014, Karnopp 2013, 
Kelemenova 2021a, Kelemenova 2021b, Klarak 2021]. 
Control stability and passive safety were solved in research 
[Vempaty 2017]. Also, many factors were observed which have 
influence to vehicle stability [Halko 2014]. 
Some authors addressed the danger of overturning of SUV 
vehicles as a frequent cause of accidents of these vehicles 
[Penny 2004]. The authors also tried to change the design 
concept of such vehicles [Krenicky 2018]. Rollover risk were 
analysed also in many other works [Farmer 2002, Hu 2023, 
MacLennan 2008, Piyabongkarn 2009, Yang 2011]. 

2 VERIFIED TILT SENSOR FOR VEHICLE INSTABILITY SENSING  

The tested tilt sensor uses the principle of thermal field 
movement due to the acceleration and tilt of the measured 
object. The tilt of the object is detected using the temperature 
difference on the individual temperature sensors. By processing 
this information, it is then possible to determine a specific tilt 
value (Fig. 2). 

 

 

Figure 2. Tilt sensor principle. 

The carrier of the tilt information is the output signal of the 
sensor in the form of a pulse width modulated signal. It is a 
low-cost sensor, so it is necessary to process its output 
information in the form of information about the tilt angle 
[Tlach 2017, Urban 2020]. The process of acquiring and 
processing information also introduces a certain uncertainty of 
obtaining this information about the angle of inclination. 
Maximum permissible errors (MPE) values are not known for 
the individual components used in this chain, so the only way 
to obtain them is experimental calibration and subsequent 
verification of the measuring chain. 

3 THE MAXIMUM PERMISSIBLE ERROR OF THE TILT ANGLE 
ETALON - DETERMINATION USING A MATHEMATICAL 
MODEL  

For the calibration and subsequent verification of the 
measuring chain, a methodology was proposed using a sine 
plate in combination with parallel gauge set. Tilt angle or the 
tilt angle standard was created using a sine plate and a block of 
parallel gauges (Fig. 3). The measurement was carried out on a 
granite base, which was adjusted using a coincidence spirit 
level. The earthenware slab represents the standard of a 
balanced plane. 

Math model of sine plate is defined as: 

SP

ZMR
SP

L

L
sin .                                                  (1) 

From the point of view of taking into account the geometric 
deviations of the sine plate, the previous model is insufficient 
for the analysis of the maximum permissible error of this tilt 
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angle standard. The influence of geometric deviations on the 
maximum permissible error of the sine plate can be partially 
assessed in two phases: 

- Change or the maximum permissible error of the inclination 
angle is caused firstly by the geometric deviations of the 
contact rollers and the deviation of their relative position. 

- Change or the maximum permissible error of the tilt angle is 
also caused by geometric deviations of the body of the sine 
ruler. 

 
Figure 3. Tilt angle etalon. 

Within these intentions, the angle standard model can be 
decomposed into two sub-models (Fig. 4): 

- model of the contact angle of the contact rollers with the 
horizontal plane αSP1, 

- model of the angle of the upper surface of the body of the 
sine plate αSP2. 

21 SPSPSP   .                                             (2) 

 

 
Figure 4. Model of the contact angle of the contact rollers with the 
horizontal plane αSP1 (upper figure) and model of the angle of the upper 

surface of the body of the sine plate αSP2 (lower figure). 

Let us consider the maximum permissible errors guaranteed by 
the manufacturer of the sine plate. The maximum permissible 
error of the tilt angle etalon can then be determined as the 
difference between the upper and lower limit value of the set 
angle of the sine plate αSP. 

minmaxmax SPSPSP
Z   .                              (3) 

The upper limit angle of the sine plate αSPmax can be determined 
as the sum of the upper limit angles αSP1max and αSP2max. The 
lower limit angle of the sine plate αSPmin can be determined as 
the sum of the lower limit angles αSP1min and αSP2min. 

While for the given angles it is possible to write: 

SP

ZMR
SP

L

RRL 12
minmax,1 arcsin


 .                           (4) 

SP

SP
L

HH 12
minmax,2 arctan


 .                                    (5) 

The upper limit dimension of the angle will be if: 

- Deviation of the size of the contact cylinder μm12 R . 

- Deviation of the size of the contact cylinder μm11 R . 

- Deviation of the dimension of the contact roller axis distance 

μm1LSP . 

The upper limit dimension of the angle 
max2SP will be if: 

- Deviation of the size (distance) of the axis of the contact 
rollers and the upper surface of the plate prism: μm11 H . 

- Deviation of the size (distance) of the axis of the contact 
rollers and the upper surface of the plate prism: μm12 H . 

The lower limit dimension of the angle 
min1SP will be if: 

- Deviation of the size of the contact cylinder μm12 R . 

- Deviation of the size of the contact cylinder μm11 R . 

- Deviation of the dimension of the contact roller axis distance 

μm1LSP . 

The upper limit dimension of the angle 
min2SP will be if: 

- Deviation of the size (distance) of the axis of the contact 

rollers and the upper surface of the plate prism: μm11 H . 

- Deviation of the size (distance) of the axis of the contact 

rollers and the upper surface of the plate prism: μm12 H . 

After substituting the mentioned deviations, it is possible to 
obtain the relations: 

LSPSP

RRZMRZMR
SP

L

RRL







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From these relations, it is possible to investigate the influence 
of the maximum permissible error of the value of the block of 
basic parallel scales on the maximum permissible error of the 
tilt angle standard. 

For the purposes of this analysis, it is necessary to know the 
dimensions of the sine ruler LLSP, D1, D2, H1, H2. These 
dimensions (Fig. 5) were measured using a CARL ZEISS Contura 
G2 coordinate measuring machine (Fig. 6). 

LSP

LTOTAL

LZMR

R1

R2

H2

H1

 

Figure 5. Dimensions measured using a coordinate measuring machine. 
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Figure 6. Measurement using a coordinate measuring machine. 

A set of parallel gauges were used to set a specific tilt angle. 
Each nominal dimension of the LZMR block of gauges was 
corrected by the value of the systematic error, while this 
corrected value is further applied in the calculations. 

The resulting uncertainty values of the blocks of gauges are also 
displayed graphically on (Fig. 7). 

After all the listed values of the variables (dimensions) have 
been substituted, it is possible to determine the values of the 
maximum permissible error of the tilt angle etalon according to 
the value of the block of parallel gauges (Fig. 8). The values of 
the maximum permissible error are displayed in arc minutes. 

 
Figure 7. Total uncertainties of the block of parallel gauges. 

 
Figure 8. The maximum error of the tilt angle etalon at different values 
of the block of parallel gauges (or tilt angles) when considering the 

most unfavourable deviations of individual members of the tilt angle 
etalon. 

It should be noted that these values are the result of the 
analysis assuming the most unfavourable situation in the 
individual partial deviations of the dimensional chain of the 
angle standard measurements [Krenicky 2022]. The maximum 
analytically determined tilt angle standard error is 29.6' (in arc 
minutes). In practice, however, the situation is usually not so 
unfavourable. One of the options for determining the 
maximum permissible error of the tilt angle standard is 
experimental identification. 

4 CALIBRATION OF TILT SENSOR  

The calibration was carried out in laboratory conditions (Fig. 9), 
while the tilt sensor was placed on the surface of the sine plate. 
The output of the sensor was displayed on a digital oscilloscope 
with the possibility of measuring the parameters of the pulse 
modulated signal. The measurements were carried out at ten 
evenly distributed selected values of the inclination angle in the 
range of 0° to 56°. For each set angle, ten observations were 
made under unchanged conditions. 
 

 

 
Figure 9. Calibration of tilt sensor. 

The measured static characteristic has a non-linear course, but 
when using a mathematical model, the characteristic can be 
linearized (Fig. 10): 

5)sin(  TILTSh ct  .                               (8) 

 

 
Figure 10. Static characteristic of the tilt sensor. 

The linearized model was approximated by a regression linear 
function, where the sensitivity of the sensor was determined 
with the value cS = -1.3749 ms and the zero shift has a value of 
zS = 5.036 ms. The regression coefficient confirms the 
correctness of the linear model. From this model, it is possible 
to determine a calibration equation that can be used to convert 
pulse width values to tilt angle values: 








 


3749.1

036.5
arcsin H

TILTh

t
 .                            (9) 

For this resulting mathematical measurement model, it is then 
possible to further determine the uncertainties of the individual 
coefficients and the covariance. After the calculation, it is then 
possible to display the course of the standard uncertainties (Fig. 
11) of the tilt angle measurement for the tested tilt sensor. 
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Figure 11. Static characteristic of the tilt sensor. 

From the course of measurement uncertainties, it can be seen 
that the maximum measurement uncertainty is 0.7° on the 
investigated measurement range of the sensor. The 
measurement uncertainty is sufficient for the application 
requirement for detecting the vehicle's tilt angle as a 
prevention against side away overturning. 

5 CONCLUSIONS 

In mechatronic systems, sensors are key components that 
provide information about the state of the controlled system 
and the state of the environment. The process of calibration 
and determination of measurement uncertainty provides us 
with information about how we can trust the sensors and how 
correct the data obtained are. Control algorithms for control 
can be successfully used only in the case of correct and reliable 
data. On the basis of these data, the regulatory deviation is 
determined and the action intervention in the controlled 
system is determined [Blatnicky 2020, Bozek 2012, Bozek 2020, 
Bratan 2023, Domanski 2017, Kelemenova 2021b, Koniar 2014, 
Mascenik 2016, Mikova 2022, Lestach 2022, Olejarova 2021, 
Saga 2019, Segota 2021, Suder 2021, Peterka 2020, Pivarciova 
2016, Vasko 2021, Zelnik 2021, Qazizada 2016]. 
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