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ABSTRACT 
This study presents a hybrid framework combining Genetic 
Programming (GP) and Grey Wolf Optimizer (GWO) to enhance 
the performance of rotary drying systems. The methodology 
employs Box Behnken Design (BBD) to investigate the effects of 
critical process parameters—drying temperature, time, and 
airflow rate—on moisture ratio (MR). GP is utilized to develop 
predictive models that capture nonlinear interactions among 
variables, whereas GWO optimizes the parameters to achieve 
the desired MR. The proposed GP-GWO framework 
demonstrates superior predictive accuracy and optimization 
efficiency compared to traditional methods. It achieves a 1.5% 
improvement in moisture ratio (MR) optimization over El-
Mesery et al.'s model. Experimental validation highlights the 
framework's ability to minimize moisture ratio while maximizing 
energy efficiency. 
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1 INTRODUCTION 

Drying is a commonly utilized process in food processing, 
where it involves thermal removal of moisture content to extend 
the shelf life of crops and preserve it for long time [Mercer 2023]. 
Heat transfer to the wet solid can occur through convection, 
conduction, radiation, or a combination of these mechanisms, 
facilitating the evaporation of moisture [Jumah 2015]. Dryers are 
essential devices in process technology used to remove solvents 
from solid materials. They employ methods such as convective, 
conductive, or radiative drying to achieve effective thermal 
separation [Zhou 2021]. Among the various types of dryers, 
rotary dryers have gained attention for their ability to reduce 
moisture content in biomass. These devices feature a rotating 

drum that ensures uniform drying through controlled airflow 
and heat application [Daragantina 2020]. Additionally, solar 
dryers are categorized into direct, indirect, mixed-mode, and 
hybrid types, each offering different technical performances 
suitable for various agricultural products [Gautam 2024]. 
Optimizing the drying process is critical for enhancing shelf life, 
reducing waste, and improving transportation efficiency of food 
products. Key process parameters influencing drying efficiency 
are temperature, humidity, airflow, and drying time. 
Optimization methods, such as adjusting temperature, feed rate, 
and drying time, significantly impact the nutritional and sensory 
quality of dried food products [Homayoonfal 2024]. 

Bitter gourd (𝑀𝑜𝑚𝑜𝑟𝑑𝑖𝑐𝑎 𝑐ℎ𝑎𝑟𝑎𝑛𝑡𝑖𝑎), is well known for its 
nutritional and therapeutic properties. Previous studies have 
explored various drying techniques for bitter gourd. For 
instance, refractance window drying optimized parameters like 
temperature, thickness, and blanching time for effective 
dehydration [Ali 2023]. Ultrasonic-assisted osmotic dehydration 
followed by hot air-assisted radio frequency drying focused on 
quality retention and processing efficiency [Guo 2024]. Other 
methods, such as halogen drying and vacuum drying, 
investigated the effects of thickness, temperature, and drying 
conditions on moisture content and chemical quality [Tran 
2023]. However, the absence of modelling and optimization in 
the drying process can lead to inefficient processing, lower 
yields, increased costs, and suboptimal product quality [Yusuff 
2024] [Gao 2024]. Mathematical modelling and optimization 
enhance drying efficiency by improving moisture evaporation 
rates and providing a better understanding of drying 
mechanisms [Rahman 2024]. These approaches lead to superior 
product quality, reduced drying time, and better retention of 
nutritional attributes [Borse 2024]. Studies employing Response 
Surface Methodology (RSM) have demonstrated effective 
optimization of drying parameters for bitter gourd. Models like 
Page’s and Midilli's have shown the best fit for drying kinetics, 
aiding in optimizing energy consumption and drying processes 
[Akhoundzadeh Yamchi 2024]. Three-dimensional RSM has also 
been used to optimize drying conditions, focusing on variables 
like drying temperature, slice thickness, and blanching time to 
enhance product quality [Ozsan Kilic 2023]]. Despite the 
widespread use of RSM in modelling and optimizing food drying 
processes, several factors limit its efficiency. RSM models are 
typically of a predefined form, often restricted to second-order 
polynomials [Ali 2023]. This inherent limitation means that the 
developed models may not capture the complexities of real-life 
nonlinear data, which may require more complex or more 
compact equations to accurately represent the system's 
behavior. In practical scenarios, the relationships between 
drying parameters and responses can be highly nonlinear and 
intricate, necessitating more flexible modelling approaches. 
Additionally, RSM requires supplementary statistical methods 
like Analysis of Variance (ANOVA) to determine the significance 
and importance of each parameter in the model [Ali 2023]. This 
adds an extra layer of complexity to the modelling process and 
may not efficiently handle the elimination of insignificant terms, 
potentially leading to less parsimonious models. The reliance on 
predefined model structures and additional statistical tests can 
limit the adaptability of RSM in capturing the true dynamics of 
the drying process. 
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Figure 1. GP-GWO methodology followed in this work 

 

In contrast, Genetic Programming (GP) offers a flexible 
modelling approach that can inherently handle nonlinearities 
and complex interactions among variables. GP models evolve 
over successive iterations, allowing insignificant terms to be 
eliminated during the training process through built-in 
mechanisms. This results in models that are potentially more 
accurate and parsimonious, providing a better fit to the actual 
data without the need for predefined model structures or 
additional statistical tests for parameter significance. 

Despite these advantages, the application of GP in modelling 
and optimizing drying processes for agricultural products like 
bitter gourd has not been extensively explored. Previous studies 
have primarily focused on traditional drying methods and 
optimization techniques using RSM [Ali 2023] [[Ozsan Kilic 2023]] 
[Akhoundzadeh Yamchi 2024], leaving a gap in the literature 
regarding the use of advanced modelling approaches like GP. 
Therefore, there is a need to investigate the effectiveness of GP 
in modelling and optimizing the drying behavior of bitter gourd. 
This approach could potentially overcome the limitations 
associated with RSM, providing more accurate models that 
capture the nonlinear dynamics of the drying process. In this 
paper, by leveraging GP's ability to evolve model structures and 
eliminate insignificant terms intrinsically, more reliable models 
are developed. The developed GP model is deployed with GWO 
to optimize the moisture ratio in drying of bitter gourds.  

2 METHODOLOGY 

The methodology followed in this paper is shown in Figure 1. 
A Box-Behnken Design (BBD) with three process parameters 
(temperature (𝑇), drying time (𝑡) and air velocity (𝑉)) is used to 
perform 15 experiments. The selection of temperature, drying 
time, and airflow rate as primary process parameters was based 
on their statistical significance in influencing the drying process. 
The final significance obtained were temperature = 0.509%, time 
= 0.345%, and airflow rate = 0.146%. Other potential 
parameters, such as ambient humidity and initial moisture 
content, were initially considered but excluded due to their 

lower statistical significance in the experimental setup. This 
decision ensures that the optimization model remains focused 
on the most impactful variables while maintaining 
computational efficiency. 

A GP model is developed based on this data and after 
assessing its accuracy it is deployed for process optimization. 
GWO, a nature-inspired optimization algorithm, is used to 
ascertain the optimized MR by finding a suitable combination of 
process parameters. The GP-GWO process begins by using the 
BBD dataset to create a structured set of input-output 
relationships using GP. The accuracy of the GP model is verified 
by comparing its predictions with experimental results. This step 
ensures that the GP model reliably reflects the process’s true 
behavior. Once validated, the GWO is applied in conjunction 
with the GP model. GWO uses the GP model’s predictions to 
guide it toward the optimal parameter settings for the system. 
The final step is to obtain the optimized solution based on the 
GP-GWO model, which provides the best set of parameters to 
achieve the desired outcomes. This output represents the 
optimal configuration for the process, derived from both 
experimental data and predictive modeling. This methodology 
integrates experimental design, evolutionary-based predictive 
modeling and optimization to explore and optimize the drying 
process. It leverages a minimal number of experimental runs 
while maximizing insights and delivering optimal solutions 
through predictive modeling and optimization. 

3 EXPERIMENTAL DETAILS 

 

Figure 2. 3D model of the desiccant rotary dryer 

Figure 2 shows the 3D model of the indigenously developed 
desiccant rotary dryer. Figure 3 illustrates the various 
components of the desiccant rotary dryer. The system starts 
with ambient air intake. The blower/fan shown on the left side 
of the model pulls air into the system. The fan controls the 
airflow direction. Desiccant Drum at the centre houses the 
desiccant material i.e., silica gel. As the air passes through this 
rotating drum, the desiccant absorbs moisture from the air, 
effectively drying it. The rotation allows the desiccant to make 
full contact with the passing air and provides continuous drying. 
This system has a solar panel which provides energy to heat the 
air. The warmer the air entering the desiccant, the more 
moisture it can absorb, improving the drying process's efficiency. 
Over time, the desiccant becomes saturated with moisture. The 
desiccant dryer has a regeneration cycle, where the moisture-
laden desiccant is heated, releasing the moisture to be vented 
out of the system. The solar panel assists with this regeneration 
process by heating the drum periodically. The temperature (𝑇), 
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drying time (𝑡) and air velocity (𝑉) are varied for each experiment 
as per the BBD design. 

 

Figure 3. Various components of the desiccant rotary dryer 
 

3.1 Experimentation design with BBD 

BBD is employed to optimize the performance of a desiccant 
rotary dryer. This experimental design methodology allowed for 
the evaluation of three independent variables— drying 
temperature (𝑇), drying time (𝑡), and airflow rate (𝑉). The BBD 
consisted of 15 experimental runs (Table 1), with three levels for 
each variable. The moisture ratio (MR) of the bitter gourds is 
measured using, 

𝑀𝑅 =
𝑀𝑡−𝑀𝑒

𝑀0−𝑀𝑒
     (1) 

where 𝑀0, 𝑀𝑡 and 𝑀𝑒 are the moisture content at time 0, 
time 𝑡 and  at equilibrium moisture content respectively. To 
negate any biases and experimental errors, three independent 
runs for each experiment are carried out. Further, the 
experiments are randomized. 

3.2 Genetic Programming 

GP is an evolutionary algorithm-based approach that 
generates a predictive model by evolving mathematical 
expressions or "programs" that best represent the system’s 
behavior. This model can capture complex, nonlinear 
relationships between inputs and outputs. 

3.3 Grey Wolf Optimizer 

Grey Wolf Optimizer (GWO) is a nature-inspired optimization 
algorithm that mimics the leadership hierarchy and hunting 
mechanism of grey wolves in the wild. In this study, GWO was 
employed to optimize the drying parameters— 𝑇, 𝑡 and 𝑉—to 
achieve the desired moisture ratio. 

The GWO algorithm initializes a population of candidate 
solutions, each representing a specific combination of drying 
parameters. These candidates are conceptualized as grey wolves 
categorized into alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔) 
wolves, based on their fitness levels. The fitness of each 
candidate solution was evaluated using the GP-derived 
predictive model for moisture ratio. 

During the optimization process, the positions of the wolves 
are updated iteratively by simulating the social hierarchy and 
hunting behavior using, 

�⃗⃗� = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ �⃗⃗� 
            (2) 

where 𝑡 indicates the current iteration, 𝑋 𝑝(𝑡) and 𝑋 (𝑡) 

represent the position vector of the prey and the grey  

wolf at iteration 𝑡⋅ 𝐴  and 𝐶  are coefficient vectors, which are 
calculated as, 

𝐴 = 2𝑎 ⋅ 𝑟1⃗⃗⃗  − 𝑎 

𝐶 = 2 ⋅ 𝑟2⃗⃗  ⃗
     (3) 

where components of 𝑎  are linearly decreased from 2 to 0 
throughout iterations and 𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗ re random vectors [0,1]. 

The GWO algorithm converges when the change in the 
fitness function between iterations falls below a predefined 
threshold or after a set number of iterations. The optimal drying 
parameters obtained from GWO were validated experimentally 
to ensure practical applicability. 

4 RESULTS AND DISCUSSION 

4.1 Development of GP model 

Based on the methodology discussed above, the GP model is 
developed based on the experimental data shown in Table 1. For 
training the GP model, various combinations of the turning 
parameters were considered and the finalized optimal tuning 
parameters are reported in Table 2. The linearly decreasing value 
of 𝑎 from 2 to 0 controls exploration-exploitation trade-off.  

During the GP training phase, various characteristics of the 
GP model are studied and reported in Figure 4. In Figure 4(a) the 
relative frequency of the terminals and functions across 
iterations is shown, which depicts how the GP model's building 
blocks (terminals and functions) evolve over iterations. 
Terminals represent input variables or constants, while functions 
represent operations (e.g., +, -, *, /). At the start of the training 
process, the distribution of terminals and functions is normal 
and as iterations elapse gradual increase in frequency of 
significant functions and terminals while decrease in 
insignificant components is seen. Similarly in Figure 4(b) it is 
depicted that initially the training process starts with equal 
weighting of variables which then gradually increases for 
significant variables. Thus, the insignificant terms would be 
minimized or eliminated as the GP model evolves over iterations. 
This shows the contrast of the GP modelling over traditional 
methods like RSM, where additional tests like ANOVA and 
stepwise elimination are necessary to identify and eliminate 
insignificant terms. In Figure 4(c) the convergence of GP is shown 
which indicates that the GP reaches a high fitness in relatively a 
smaller number of iterations. The depth and length of the GP 
tree can have a significant impact on the complexity of the GP 
model. Thus, for this study the maximum tree length and depth 
are restricted to 30 and 6 respectively. In Figure 4(d), the 
maximum, minimum and average depth of the GP trees during 
stage is monitored. It shows that during each iteration several 
GP trees are constructed and evaluated whose complexity can 
be of varying proportions. 

 

Drying  
Temperature, 𝑇 (°𝐶) 

Drying  
Time, 𝑡 (𝑚𝑖𝑛) 

Air Flow  
Rate, 𝑉 (𝑚/𝑠) 

Moisture  
Ratio, 𝑀𝑅 

GP  
(proposed) 

[El-Mesery 
2023] 

50 3000 1 0.323379 0.328908494 0.2857 

65 3000 1 0.331648 0.333739618 0.298615 

50 4200 1 0.3401 0.336545306 0.2857 

65 4200 1 0.333632 0.346645831 0.298615 
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50 3600 0.5 0.295054 0.299130883 0.255 

65 3600 0.5 0.294621 0.303083354 0.267915 

50 3600 1.5 0.348033 0.3561584 0.3164 

65 3600 1.5 0.370106 0.368015811 0.329315 

57.5 3000 0.5 0.304461 0.29841196 0.2614575 

57.5 4200 0.5 0.309952 0.303461802 0.2614575 

57.5 3000 1.5 0.356106 0.354001631 0.3228575 

57.5 4200 1.5 0.373082 0.369151157 0.3228575 

57.5 3600 1 0.344403 0.337816938 0.2921575 

57.5 3600 1 0.344721 0.337816938 0.2921575 

57.5 3600 1 0.343541 0.337816938 0.2921575 

57.5 3600 1 0.335683 0.337816938 0.2921575 

Table 1. Experimental MR and predictions by proposed GP model and El-Mesery et al.’s model 

 

GP parameter  Value GWO parameter Value 

Max. Iteration  200 Max. Iteration 100 

Population  50 Population 30 

Max. tree length  30 𝑎 Linearly decreased from 2 to 0 

Max. tree depth  6 - - 

Loss function  MSE - - 

Crossover probability  90% - - 

Mutation probability  10% - - 

Elites per generation  2 - - 

Table 2. Tuning parameters of GP and GWO

 
Figure 4. Training progress of the GP models (a) relative frequency of terminals and functions (b) relative frequency of variables (c) fitness of GP 

model (d) variation on GP tree length across iterations. 
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Figure 5 shows the proposed GP model in the form of a GP 
tree. Its length and depth are 20 and 4 respectively. The 
proposed GP model is mathematically expressed as  

𝑀𝑅 = (β0 + β1 ⋅ 𝑉 + β2 ⋅ 𝑉 ⋅ 𝑇 +
β3

𝑉
+

β4⋅𝑉⋅𝑇

𝑡
) (1) 

where,β0 = 0.31637;  β1 = −0.02115; β2 =
0.00155; β3 = −0.01715; β4 = −0.03207;  

Figure 5. Tree structure of the developed GP model 

4.2 Predictive performance of GP model 

Figure 6 illustrates the predictive performance of the GP 
model by studying various aspects of it.  Figure 6(a) compares 
the GP predictions with experimental results. The points aligned 
closer to the diagonal line indicate a strong agreement between 
experimental and predicted values. Similarly, Figure 6(b) 
assesses the residuals against predicted values. The spread of 
points around zero without any clear pattern implies that the 
model's prediction errors are randomly distributed. This 
randomness is desirable, as it suggests that there are no 
systematic biases in the GP model's predictions. Figure 6(c) is a 
normal probability plot of the residuals, comparing the 
distribution of residuals with a normal distribution. Most points 
fall within the reference line and the upper and lower 

percentiles, which indicates that the residuals are approximately 
normally distributed. This normality of residuals further 
validates the GP model, as it suggests that the residuals are 
random and not influenced by unmodeled factors. 

Figure 7 shows the variation of the MR with respect to 
temperature (𝑇), drying time (𝑡), and air velocity (𝑉). It shows 
that at higher air velocities, MR values are generally higher 
across the range of temperatures and drying times. This 
indicates that increased air velocity contributes to a slower 
drying rate, as the moisture ratio remains higher. The plot also 
shows that MR decreases with increasing temperature and 
drying time across all velocities, suggesting that higher 
temperatures and prolonged drying times enhance the drying 
process, lowering MR.  

To further assess the performance of the GP-GWO model, a 
comparison was conducted with El-Mesery et al.'s model. While 
both models demonstrated the ability to optimize moisture ratio 
(MR), the GP-GWO model consistently provided more accurate 
predictions, as seen in Figure 8 and Table 3. The proposed GP 
model aligns closely with the experimental values, with minor 
deviations across the experiments. In comparison, El-Mesery et 
al.'s model consistently underestimates MR values. This pattern 
suggests that while El-Mesery et al.'s model captures some 
trends, it may not fully capture the complexities of the drying 
process as effectively as the GP model. Specifically, the GP-GWO 
model achieved an R² of 92.28% and an MSE of 0.0023, whereas 
El-Mesery et al.'s model exhibited higher deviations from 
experimental results. The key advantage of the GP-GWO model 
lies in its ability to capture complex nonlinear relationships 
without requiring predefined model structures, unlike 
traditional response surface methods. This enhanced flexibility 
allows for improved optimization accuracy and robustness in 
real-world applications.  

 

 
Figure 6. Predictive performance of the GP model (a) experimental versus GP predicted MR (b) GP predicted MR versus its residuals (c) normal 
probability of residuals. 
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Figure 7. Variation of MR with respect to 𝑇 and 𝑡 at various 𝑉. 

4.3 Optimization using GWO 

Figure 9 illustrates the convergence behavior of the Grey 
Wolf Optimizer (GWO) algorithm over 100 iterations in terms of 
fitness values. At the initial stages (iterations 0-10), there is a 
significant drop in both the best and average fitness values, 
indicating that the algorithm quickly explores and identifies a 
promising solution region. After this rapid decline, the best 
fitness curve stabilizes, showing only minor improvements in the 
remaining iterations, suggesting that the GWO algorithm has 
found a near-optimal solution and is now refining it through 
exploration-exploitation balance. The average fitness curve 
fluctuates slightly throughout, indicating ongoing exploration by 
the population. 

 
Figure 8. Comparison of the proposed GP model with experimental and 

El-Mesery et al.’s model 

4.4 MR optimization with GP-GWO 

Table 3 presents the optimized drying parameters predicted 
by the hybrid Genetic Programming-Grey Wolf Optimizer (GP-
GWO) model. The results show that the GP-GWO model has 
identified the optimal combination of drying conditions to 
achieve minimum moisture ratio. Specifically, the optimized 
parameters are drying temperature of 50°c, drying time of 3000 
minutes, air flow rate of 0.5 m/s. Under these conditions, the 
predicted moisture ratio is 0.29 by GP-GWO model as compared 
to 0.2857 by El-Mesery et al.'s model (implying a 1.5% 
difference). These results demonstrate the effectiveness of the 

GP-GWO model in optimizing drying conditions. The optimized 
parameters suggest a moderate temperature, extended drying 
time, and relatively low air flow rate. 

The results demonstrate that the proposed GP-GWO model 
not only provides more accurate predictions but also achieves 
better optimization performance compared to El-Mesery et al.'s 
model. The observed deviations suggest that while El-Mesery et 
al.'s model captures general drying trends, it fails to fully account 
for nonlinear parameter interactions, which GP effectively 
models. 

  
Figure 9. Convergence of the GWO algorithm 

 Table 3. Optimized parameters predicted by GP-GWO 

4.5 Scalability and Industrial Applications 

The proposed GP-GWO framework, though effective in 
optimizing drying parameters in laboratory settings, must be 
evaluated for scalability in industrial-scale systems. Scaling up 
would require addressing several key challenges like increased 
computational complexity, real-time adaptability and 
integration with industrial automation systems. One primary 
concern is the computational cost of GP models as the dataset 
size increases. However, this can be mitigated using parallel 
computing techniques or hybrid models that integrate deep 
learning for feature extraction. Additionally, industrial drying 
systems often operate under fluctuating environmental 
conditions, necessitating adaptive optimization techniques. 
Future work should explore real-time implementation of the GP-
GWO framework using IoT-enabled monitoring systems for 
enhanced predictive control. Moreover, incorporating additional 
constraints related to mechanical durability, energy efficiency 
and maintenance costs will be critical for successful large-scale 
deployment. 

5 CONCLUSION 

Based on the comprehensive experiments the following 
conclusions are drawn— 

 The proposed hybrid GP-GWO framework effectively 
models and optimizes rotary drying systems, addressing 
nonlinear interactions among process parameters. 

 Genetic Programming (GP) demonstrated superior 
predictive accuracy compared to conventional methods, 
achieving an R² of 92.28% and an MSE of 0.0023. This 
highlights the robustness of GP in capturing complex 
nonlinearities more effectively than traditional 
approaches. 

𝑇 (°C) 𝑡 (min) 𝑉 (m/s) MR GP  
El-Mesery  

et al. 

50 3000 0.5 0.3 0.29 0.2857 
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 Grey Wolf Optimizer (GWO) successfully optimized key 
drying parameters—temperature, time, and airflow 
rate—to minimize moisture ratio. 

 Experimental validation confirmed that the GP-GWO 
approach outperformed traditional models, such as El-
Mesery et al.'s, in both accuracy and optimization 
efficiency. 

Future research directions should focus on enhancing the 
adaptability of the GP-GWO framework for real-time 
optimization in industrial environments. One potential avenue 
is to integrate deep learning models with GP to improve 
predictive accuracy while reducing computational overhead. 
Additionally, exploring multi-objective optimization 
techniques could enable simultaneous optimization of 
multiple performance metrics, such as energy efficiency and 
drying uniformity. Another important area of investigation is 
the incorporation of reinforcement learning to dynamically 
adjust drying parameters based on real-time feedback from 
industrial sensors. Expanding the application of GP-GWO to 
other thermal separation processes, such as freeze-drying and 
spray drying, could further validate its robustness across 
diverse industries. 
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