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Passive laser barriers are designed to protect humans from 
risks of laser radiation in the production environment. 
Manufacturers of such barriers have to guarantee the 
protective effect. Therefore, experiments are conducted to 
determine their protection times. For this purpose, some 
sample based approaches exist but they are not statistically 
reliable. An approach for the description of the distributions of 
protection times of passive laser safety barriers is presented to 
develop a statistical reliable method for the estimation of safe 
protection times out of few samples. The analysis result of the 
statistical deviations shows that the measured data can be 
described by a bimodal approach of two weighted normal 
distributions.  
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1 INTRODUCTION AND STATE OF THE ART 
The number of laser applications has been increasing in 
manufacturing [Optech Consulting 2015]. Due to this growth, 
the aspect of laser safety has become more important. Passive 
laser housings represent a common measure to protect 
humans against the risks of laser radiation. In this context, the 
laser protection time ts is defined in this work as the period of 
time from the beginning of irradiation until the laser beam 
melts the material of the barrier and the radiation finally 
penetrates it. To test the barriers on-site, a mobile test rig has 
been developed at the iwb [Lugauer 2014]. Using this rig, 
statistical deviations of protection times ts were determined for 
several materials. Considering the high financial and time 
expenses of such experiments, the challenge is to estimate 
protection times ts out of few samples. Various methods exist 
on how to estimate a nominal protection time ts. In the relevant 
standard IEC 60825-4, the protection time ts1 is calculated 
according to equation 1 [IEC 2006]: 

 sxts  37.01  (1) 

x̄  represents the sample mean and s the standard deviation of 
the sample. The procedure is based on the assumption that 
laser protection times are normally distributed. A sample size 
of n ≥ 6 is referred by the standard. Besides the proposal in 
equation 1, there is another approach to calculate protection 
times ts The nominal laser protection time ts2 is determined 
based on a sample size of n = 10 [DGUV 2013] by equation 2: 

is xt min7.02   (2) 

In order to estimate the nominal protection time ts2 using the 
second approach, the smallest empirical value of the 
sample min xi has to be multiplied, like in the first approach, 
with a safety factor of 0.7. It is noteworthy that the distribution 

function of the protection times is not being considered with 
the second approach. 
 
Therefore the questions arise, which approach is a valid one, 
how are protection times of several materials distributed and 
can the protection time of a laser safety barrier ts be 
determined by means of few samples. In order to find a 
proposal that is based on reliable statistical methods, 
experimental data of the distribution of laser protection times 
with different materials, radiation intensities I and a varying 
number of samples n were analysed. Within this work, a 
possibility to describe statistical deviations of laser protection 
times using a bimodal approach of description with a sum of 
two weighted normal distributions, kernel density estimation 
and least-squared-optimisation is shown. 

2 ANALYSIS AND INTERPRETATION OF PROTECTION TIME 
TEST RESULTS 

To find a suitable approach to describe statistical variations of 
protection times, empirically determined test results were 
analysed and interpreted. The data have been collected by 
experiments that have been carried out at the iwb using the 
setup described in [Lugauer 2014]. A quite large number of 
samples n is available, which leads to a more detailed 
knowledge of the distribution. The laser power PL, the diameter 
of the laser spot at the plate surface dL, the number of 
samples n, as well as the material of the plates were varied. In 
addition to the steel alloys 1.0241 (zinc-magnesium coated) and 
DC-01, the aluminum alloy EN-AW-5083A was tested. The 
dimensions of the samples were 280 x 280 x 1.5 mm. An 
overview of the experiments, the parameters and the particular 
sample size n is given in Tab. 1. 
 
To illustrate the further proceeding, the next steps are 
exemplary demonstrated at test series 3, which protection 
times are shown in Fig. 1. 
 

 

Figure 1. Statistical distribution of protection times of zinc-magnesium 
coated steel 1.0241 samples irradiated with a Ytterbium fibre laser at a 
laser power PL = 3 kW and with a beam diameter of dL = 60 mm. Sample 

size n = 150. [Lugauer 2015] 

For further analysis, a histogram of each dataset is created with 

n  classes of equal width and a linear transformation is 
applied to each value in order to achieve a consistent and 
comparable representation. For the latter mentioned purpose, 
equation 3 was used [Verma 2015]: 
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The theoretical probability density function assuming a normal 
distribution was calculated based on the mean of the sample x̄ 
and the standard deviation of the sample s. The result can be 
seen in Fig. 2. 
 

 

Figure 2. Empirical values of Fig. 1 transformed and divided into classes 

in comparison with the theoretical probability density function 
assuming a normal distribution.  

A visual comparison between the empirical values and the 
theoretical probability density function reveals a clear disparity: 
The theoretical maximum value is much smaller than the 
empirical value and the dispersion of the theoretical values is 
larger than that of the experimental values. In addition, a test 
of goodness of fit in view of a normal distribution was applied. 
A suitable test for this purpose is the Anderson-Darling test, 
firstly described in 1952 [Anderson 1952], [Stephens 1979]. The 
calculation was executed by the aid of the MATLAB Statistics 
and Machine Learning Toolbox, more precisely the script 
´adtest´ [Mathworks.2016]. The resulting p-level implies a 
significant deviation of the empirical values from the normal 
distribution if pAD < 0.05 [Anderson 1952], [Stephens 1979], 
[Mathworks 2016].  
 
 
 
Table 1. Experiments carried out to determine the distribution of 
protection times. (PL = laser output power, dL = beam diameter at the 
sample surface, n = sample size, pAD = p-value of the Anderson-Darling 

test, pHD = p-value of Hartigan's dip test, R = residual of the bimodal 
approach with two normal distributions, Rchy = residual of the bimodal 
approach with a normal and a Cauchy distribution, Rwb = residual of the 

bimodal approach with two Weibull distributions)  

 
 
As shown in Tab. 1 for most of the data sets the null hypothesis, 
which states that the examined values correspond to a normal 
distribution must be rejected. In five cases, pAD is larger than or 
equal to 0.05, which means on the one hand that the null 
hypothesis cannot be rejected, but on the other hand the 
protection times may not inevitable correspond to a normal 
distribution. 
 
 
A deviation between the statistical distribution of protection 
times of laser barriers and the normal distribution was already 
discussed and mentioned in several works, e. g. [DGUV 2013] 
and [Lugauer 2015]. The fact that empirical protection time 
values differ in particular left of the area from the maximum of 
the normal distribution is often discussed among experts, 
however, was never fully investigated. Zaeh & Braunreuther 
used a Weibull-distribution to describe the statistical behaviour 
of protection times of hollow chamber barriers [Zaeh 2010]. 
Due to the complex determination of the Weibull-parameters, 
they finally used a normal distribution as approximation. As 
shown above, this approach is not suitable for the description 
of the considered data sets of the present work. Therefore, 
another procedure was chosen: The subjective observation of 
the empirical data indicates that the protection times may be 
distributed multimodal. `The mode is a measure of central 
tendency. The mode of a set of observations is the value of the 
observation that have the highest frequency. According to this 
definition, a distribution can have a unique mode (called the 
unimodal distribution). In some situations a distribution may 
have many modes (called the bimodal, trimodal, multimodal, 
etc. distribution)´ [Dodge 2008]. The simplest form of 
multimodality is bimodality, which means that an examined 
probability distribution shows two distinct peaks respectively 
local maxima. Freeman & Dale mention inter alia Hartigan's dip 
test (HDT) as suitable means for testing a distribution on 
bimodality [Freeman 2012]. 
 
The HDT, firstly described by Hartigan & Hartigan in 1985, 
employs the null hypothesis that the observed distribution is 
unimodal [Hartigan 1985]. If the calculated p-value pHD of the 
HDT is smaller than 0.05, a significant bimodality is indicated, 
and the null hypothesis has to be rejected [Freeman 2012]. 
Values between 0.05 and 0.10 suggest a bimodality with 
marginal significance [Freeman 2012]. The HDT was applied to 
the data sets at hand using Mechlers MATLAB translation of 
Hartigans original FORTRAN subroutine [Mechler 2002].  

Nr material PL in kW dL in mm n pAD pHD R Rchy Rwb 

1 1.0241 3 40 50 0.0035 0.00 0.03 0.03 4.40 

2 1.0241 3 60 50 0.2450 0.52 0.22 0.22 1.24 

3 1.0241 3 60 150 1.6 x 10-5 0.00 0.11 1.88 0.24 

4 1.0241 3 80 50 0.8270 0.84 0.40 0.41 0.04 

5 1.0241 5 40 50 0.0018 0.00 0.00 0.10 1.65 

6 1.0241 5 60 49 0.0217 0.00 0.11 0.17 1.15 

7 1.0241 5 80 50 0.0150 0.42 0.07 0.09 2.13 

8 1.0241 5 80 150 6.43 x 10-6 0.00 0.18 1.07 0.12 

9 1.0241 7 40 50 0.0036 0.00 0.04 0.53 0.59 

10 1.0241 7 60 50 0.0160 0.00 0.08 0.36 2.84 

11 1.0241 7 80 50 0.0210 0.00 0.03 0.25 0.79 

12 1.0241 7 80 150 0.0056 0.00 0.50 0.36 0.03 

13 DC-01 3 60 50 0.0050 0.00 0.04 1.45 5.19 

14 EN AW-5083 A 5 40 50 0.4050 0.00 0.07 0.16 0.09 
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The results are shown in Tab. 1 rounded to two decimals: For 
most of the examined data sets, pHD lies far beyond 0.05 and 
therefore the HDT indicates bimodality. 
 
In summary, the examined empirical values do not show a 
single normal distribution but rather a bimodal distribution. 

3 DESCRIBING PROTECTION TIMES OF LASER SAFETY 
BARRIERS 

The investigations of section 2 revealed a bimodal distribution 
of protection times and because of the wide spread of the 
normal distribution in nature and technology and its good 
handling quality the following approach of description was 
chosen: 
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F, the description of the whole distribution, arises as the sum of 
the two weighted normal distributions N1 and N2, which are 
depending on their particular means μ and standard 
deviations σ. The weighting coefficient is given by q. To 
describe a data set at hand, the unknown parameters have to 
be specified. 
  
For this purpose a spline interpolation was used, which was 
applied by the aid of the MATLAB function `interp1´ 
[Mathworks 1996] and the script shown in section 7. Thereby 
first of all a function including the central values of each class of 
a particular data set is determined. An exemplary result for the 
values of Fig. 2 is shown in Fig. 3. Moreover, Fig. 3 displays the 
bimodal approach with two weighted normal distributions 
using the calculated parameters for the presented empirically 
obtained values.  
 

 

Figure 3. Approximation of empirical protection time values by the aid 
of a spline interpolation and description of the data using a bimodal 
approach with two weighted normal distributions.  

It is obvious, that the description by the spline interpolation 
function (SIF) is very accurate and much better than the 
theoretical probability density function of Fig. 2. In order to get 
the necessary values for equation 4, the maxima of the SIF 
were determined. Their values served as an approximation for 
the searched means μ1 and μ2 of the normal distributions. If 
there were more than two maxima, the two largest were used. 
The standard deviations σ1 and σ2 were estimated based on the 
curvature of the spline interpolation function at the positions of 
the local maxima as shown in section 7. The weighting factor q 
was calculated using the proportion Z of the two function 
values F (μ1) and F (μ2):       
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The dashed graph in Fig 3 shows the bimodal approach with 
two weighted normal distributions using the calculated 
parameters as mentioned above for the presented empirically 
obtained data. It is evident, that the bimodal description 
matches the available data much better than the unimodal 
description shown in Fig 2. 

4 IMPROVEMENT OF THE DESCRIPTION USING A KERNEL 
DENSITY ESTIMATION 

In the following, the description by the aid of a bimodal 
approach with two weighted normal distributions was 
improved by using a kernel density estimation (KDE). The KDE, 
described by Parzen, is a method for estimating the probability 
distribution of a random variable [Parzen 1962]. The aim is to 
determine the density function PKDE(x) on basis of a finite 
number of experimental data xi. PKDE(x) is defined as a weighted 
sum [Parzen 1962]: 
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In equation 6, x is a continuous random variable, h is the 
bandwidth of the KDE with h > 0, n is the sample size and xi is 
the value of a single measurement. The bandwidth h is a 
selectable parameter, with influence on the quality of the 
estimation. The theorem of Nadaraya says that with an 
appropriately chosen bandwidth an arbitrarily good estimate is 
possible [Nadaraya 1964], [Nadaraya 1965]. The kernel K is a 
function, which assigns the continuous random variable x a 
value in the vicinity of the measured value xi. Several functions 
can be used for the kernel, a common used one is the normal 
distribution. In this case, the kernel can be described as 
[Parzen 1962]: 
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Vividly illustrated, the KDE utilising the normal distribution is 
built up as an integrated sum of particular normal distributions, 
which spread around each measurement xi. 
  
Since the KDE can be seen as an ideal description of the 
empirical values, the bimodal description of section 3 can be 
improved by adjusting the parameters in a way that the 
difference D between KDE and F of equation 4 is minimal. This 
is an optimisation task, which can be solved using the method 
of least squares [Rawlings 1998]. D can be written as: 

    22211 ,,,, 
x

KDE qFxPD   (8) 

The optimisation procedure needs an initial estimation for the 
parameters of F. For this purpose, the values determined by the 
usage of the spline interpolation in section 3 was used, because 
as shown above, a good approximation was achieved using this 
method. Fig. 4 shows the description of the empirically 
obtained data of Fig. 3 employing KDE and the optimised 
bimodal approach with a sum of two weighted normal 
distributions: 
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Figure 4. Values of Fig. 3 approximated by KDE and the KDE optimised 

bimodal approach with two weighted normal distributions 

To quantify the quality of the improvement, the residual R⃗  is 
calculated as the difference between the values of PKDE(x) and 
the theoretical function F. So R⃗  is the sum of the particular 
differences at all points of discretisation. The residual R⃗  is a 
vector. To calculate its length, the Euclidian norm of the 
residual || R⃗  || has to be calculated [Rawlings 1998]:  
   

     
x
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The optimisation and the calculation of R was executed utilising 
the MATLAB-function `lsqcurvefit´ [Mathworks 2015] and the 
script shown in section 7. The resulting residuals R are listed in 
Tab. 1. 
  
Comparing Fig. 3 and 4, it is obvious that the latter mentioned 
shows a better match of the theoretical and the real 
distribution. So it can be summarised, that the KDE- and least 
square-based optimisation leads to a better description of the 
empirically obtained values than the exclusive application of 
the spline-based method. The small residuals underline the 
optical impression of better adapting. 

5 ALTERNATIVE APPROACHES 
Besides the above-mentioned bimodal approach with a sum of 
two weighted normal distributions, other sensible approaches 
are conceivable. So in addition the presented method, 
approaches with a sum of a normal distribution and a Cauchy 
distribution and an approximation with a bimodal distribution 
were calculated in analogy to the explanations of section 4. 
  
The Cauchy probability density distribution can be written as: 
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with -∞ < μchy<∞ and λchy as parameters [Prokhorov 2012]. The 
bimodal approach with a sum of a normal and a Cauchy 
distribution is: 
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The Weibull probability density distribution can be written as: 
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with awb as scale parameter and bwb as parameter of shape 
[Verma 2014]. The bimodal approach with two Weibull 
distributions is: 
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The residuals Rchy and Rwb were determined analogously to 
section 4 and are listed in Tab. 1. It is obvious that both 
alternative methods describe the available data well but worse 
than the approach using two normal distributions. 

6 CONCLUSION AND OUTLOOK 
The presented investigations and results show, that protection 
times of laser safety barriers are not normal distributed as 
supposed in the relevant standard IEC 60825-4}. Instead, they 
show a bimodal behaviour, which can be described using a 
bimodal approach of the sum of two weighted normal 
distributions. Utilising spline interpolation and kernel density 
estimation, the empirically obtained values can be 
approximated very well with this method. Alternative 
approaches with a normal and a Cauchy respectively with two 
Weibull distributions were tested but described the data worse 
than the first approach. 
  
A bimodal distribution means, that there are two populations 
with unknown origin. To develop a reliable method for the 
determination of safe protection times, knowledge of the 
reason for this has to be gained. This can be done by tests of 
influences of sample surface, sample size, deviations within the 
material, fluctuations of the laser output power, a focal shift 
and much more. Finally it is to state, that the common method 
for determining protection times should thought over 
recognising these results. 

7 APPENDIX 

7.1 Script for spline interpolation 
counts_wz_spline=[0,counts_wz_rel,0]; 
 
delta_wz_spline=centers_wz_rel(2)-centers_wz_rel(1);  
centers_wz_spline_Anf=centers_wz_rel(1)-delta_wz_spline; 
centers_wz_spline_End=centers_wz_rel(end)+delta_wz_spline; 
centers_wz_spline=[centers_wz_spline_Anf,centers_wz_rel,cen
ters_wz_spline_End]; 
xq=(min(x)-s_emp):0.01:(max(x)+s_emp);  
vq=interp1(centers_wz_spline,counts_wz_spline,xq,'spline');  
for i=1:1:length(vq) 
if vq(i)<0 
  vq(i)=0; 
end 
end 
 
[pks,locpeaks]=findpeaks(vq); 
 
Array_peaks=zeros(20,10);  
for i=1:1:length(pks) 
Array_peaks(i,1)=locpeaks(i); 
Array_peaks(i,2)=pks(i); 
end 
 
Array_peaks = sortrows(Array_peaks, -2);  
 
cell_test_norm=cell(100,20);  
x_ber=-8:0.01:8;  
mu=0; 
vec_sigma=(0.05:0.005:1);  
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for i=1:1:length(vec_sigma) 
cell_test_norm{i,1}=vec_sigma(i);  
end 
 
for i=1:1:length(vec_sigma) 
cell_test_norm{i,2}=normpdf(x_ber,mu,vec_sigma(i));  
end 
 
for i=1:1:length(vec_sigma) 
cell_test_norm{i,3}=diff(normpdf(x_ber,mu,vec_sigma(i)));  
end 
 
for i=1:1:length(vec_sigma) 
cell_test_norm{i,4}=cell_test_norm{i,3}(525);  
end 
 
vec_diff_vq=diff(vq); 
for i=1:1:length(locpeaks) 
ind_15=Array_peaks(i,1)+25; 
Array_peaks(i,3)=vec_diff_vq(ind_15);  
 
for i=1:1:length(vec_sigma) 
cell_test_norm{i,6}=diff(diff(normpdf(x_ber,mu,vec_sigma(i))));  
end 
 
vec_hilf_norm_max=cell_test_norm{:,2}; 
[r,t]=max(vec_hilf_norm_max); 
for i=1:1:length(vec_sigma) 
cell_test_norm{i,7}=cell_test_norm{i,6}(t);  
end 
 
vec_ddiff_vq=diff(diff(vq)); 
for i=1:1:length(locpeaks) 
ind_max=Array_peaks(i,1); 
Array_peaks(i,6)=vec_ddiff_vq(ind_max);  
end 
 
for i=1:1:length(vec_sigma) 
for k=1:1:length(locpeaks)  
cell_test_norm{i,8+k}=cell_test_norm{i,4}-Array_peaks(k,3); 
end 
end 
 
for k=1:1:length(locpeaks) 
vec_hilf_min=zeros(50,1); 
  for i=1:1:length(vec_sigma) 
      vec_hilf_min(i)=cell_test_norm{i,8+k}; 
  end 
      vec_hilf_min=vec_hilf_min(vec_hilf_min~=0); 
 
  [val_min,ind_min]=min(abs(vec_hilf_min)); 
sigma_schaetz=cell_test_norm{ind_min,1}; 
Array_peaks(k,4)=sigma_schaetz; 
end 
 
for i=1:1:length(vec_sigma) 
for k=1:1:length(locpeaks) 
cell_test_norm{i,15+k}=cell_test_norm{i,7}-Array_peaks(k,6); 
end 
end 
 
for k=1:1:length(locpeaks) 
vec_hilf_min=zeros(100,1); 
  for i=1:1:length(vec_sigma) 
      vec_hilf_min(i)=cell_test_norm{i,15+k}; 
  end 

      vec_hilf_min=vec_hilf_min(vec_hilf_min~=0); 
  [val_min,ind_min]=min(abs(vec_hilf_min)); 
sigma_schaetz_kr=cell_test_norm{ind_min,1}; 
 
Array_peaks(k,7)=sigma_schaetz_kr; 
 
end 
 
if length(locpeaks)>1 
z=Array_peaks(1,2)/Array_peaks(2,2); 
hv_bi_nv=z/(1+z);  
else 
hv_bi_nv=1; 
end 
 
if(length(locpeaks)>1) 
mu1=xq(Array_peaks(1,1));  
sigma1=Array_peaks(1,7);  
 
mu2=xq(Array_peaks(2,1));  
sigma2=Array_peaks(2,7);  
elseif(length(locpeaks)==1) 
mu1=xq(Array_peaks(1,1));  
sigma1=Array_peaks(1,7);  
mu2=0; 
sigma2=1; 
end 
 

7.2 Script for kernel density optimization 
mw_emp=mean(data);  
s_emp=std(data); 
 
x=(data-mw_emp)/s_emp;  
x=sort(x);  
  
vec_test_ks=ksdensity(x,x_ber); 
  
fun_test_norm=@(param,x_ber) 
param(1)*normpdf(x_ber,param(2), 
param(3)) + (1-param(1))*normpdf(x_ber,param(4),param(5)); 
  
param_guess=[hv_bi_nv,mu1,sigma1,mu2,sigma2]; 
  
[param_opt,resnorm_bimodal_opt]=lsqcurvefit(fun_test_norm, 
param_guess,x_ber,vec_test_ks); 
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