
 

 

MM SCIENCE JOURNAL I 2016 I NOVEMBER  

1332 

 

DETERMINATION OF 
DEFORMATION RESISTANCE 

IN TUBE FLARING PROCESS 
EVA PETERKOVA, RADKO SAMEK 

 Brno University of Technology, Faculty of Mechanical 
Engineering, 

 Brno, Czech Republic  

DOI: 10.17973/MMSJ.2016_11_2016115 

e-mail: peterkova@fme.vutbr.cz 

The determination of the forming force required 
for manufacturing of the specified component is very important 
in practice. It is necessary to know value of the deformation 
resistance of the forming process for its theoretical finding. This 
paper presents a methodology for calculating of the total 
deformation resistance and subsequently of the forming force 
by using the theoretical equations. The method of the tube 
flaring was chosen for the research. The experiments were 
done on the testing tube samples from material 1.4301. These 
experiments were performed for comparing of the theoretical 
and real values of the forming force. The calculated values 
of forces differ slightly from those obtained experimentally. 
This difference lies in the use of the simplified input conditions 
and computational analysis such as material model obtained 
from tensile test of tubes, the chosen coefficient of friction and 
the simplified approach to calculation of the bending stress 
used in the theory of deep drawing. 
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1 INTRODUCTION  

Currently, the objective is to minimize the weight of the 
products while maintaining rigidity and strength of the 
construction, particularly in the automotive or the transport 
industry. The tendency is to substitute some components 
produced from semi finished products of solid cross-sections 
with semi finished products from tubes. Tube forming as such is 
not new, but there are many questions in the area of the pipes´ 
behaviour and their characteristics under the different loading. 
It is necessary to perform various tests in order to answer these 
questions. The technological tests are the best, because they 
are the most similar to the real loading of pipes in practice, 
in terms of the stress-strain states. One method of the pipes 
forming is also the method of the tube flaring. Many authors 
have already researched this topic in their studies. For example, 
[Lu 2004] solves the problem of determining of the tube flaring 
ratio and strain rate tube end to the tool and stroke velocity 
in their study. Similarly, the authors [Fischer 2006], [Yang 2010] 
and [Mirzai 2008] determined the deformation characteristics 
in the flaring test by using the finite element simulation. They 
have dealt with the problems of friction and addiction driving 
force - stroke. The authors [Almeida 2006], [Alves 2006] and 
[Huang 2009] have researched of not only method of the tube 
flaring, but also method of tube nosing using a die. There is 
studied the influence of process parameters on the formability 
limits induced by ductile fracture, wrinkling and local buckling. 
Interesting insights about the behaviour of thin-walled tubes 
are given in [Sun 2006], where the problem of tube inversion 
forming process with conical die is solved.  

However, the question of the forming force´s determination 
for selected method is very interesting and several approaches 
exist for its determination. One of these approaches is the 
using of the knowledge of the deformation resistance of a tube. 

So the aim of this research is to determine the deformation 
resistance of tubes under the given conditions and analyze their 
behaviour during the flaring process by using a conical mandrel.  

2 THEORETICAL DETERMINATION OF DEFORMATION 
RESISTANCE  

It is not enough to take into account the deformation 
resistance only, but it is necessary to add an influence of so 
called passive technological resistances to it, during the change 
in shape of the formed component. These are mainly the 
friction influence, the geometrical changes, the changes 
in temperature conditions, the stresses and the impact of local 
changes of the deformation rate during the metal flow. 
Deformation resistance is the value, which takes into account 
these influences. It is value, which the forming force has to 
overcome during the forming process. It is appropriate to adapt 
the technological test to real loading of a semi finished product 
in practice as much as possible, so that the determination 
of the deformation resistance and consequently also 
the forming force was as accurate as possible. 

 

2.1 Tube flaring process 

Many components manufactured from tubes have formed 
ends, for example pipe fittings, components of engines, design 
products and the like. Therefore, the tube flaring process was 
chosen as the technological test. The principle of this test is 
shown in Fig. 1a. Pressure force of the machine ram acts on the 
upper end of the tube and slides the tube onto the mandrel 
(punch). So, the geometry of the mandrel simultaneously 
determines the finish shape of the conical part of the tube.  

 

                 

Figure 1. Principle of tube flaring process 

The end expanding consists of two phases, from the bend and 
subsequent formation of the conical part. The detail of the 
extended tube end with the designation of significant points is 
in Fig. 1b. The focus of deformation is situated among points 1-
3. Here, the deformation strains occur. The bending takes place 
between points 1-2 and the formation of the cone is between 
points 2-3. The stress state of the tube flaring process is 
schematically shown in Fig. 2. Due to the small value of the wall 
thickness in relation to other geometric parameters it can be 
assumed that the stress in direction of the wall thickness is 
small too. Therefore, the assumptions based on the membrane 
theory can be accepted for theoretical analysis [Samek 2011], 
[Marciniak 2002]. Then, the biaxial stress state will be occurring 
in the focus of deformation. There are the deformation stress 
in the circumferential direction σθ and the deformation stress 
in the radial (meridional) direction σr. 
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Figure 2. Stress state of tube flaring [Samek 2011] 

 

2.2 Derivation of total deformation resistance 

The aim of theoretical calculations is the determination 
of the required force with use of the total deformation 
resistance in point 1. Essentially, the value of the total 
deformation resistance is the sum of the partial deformation 
resistances acting in a corresponding cross-section (Fig. 3). 
These are the resistance of the material against deformation σr, 
the resistance against bending σo and the frictional resistance 
at contact surface σf. The general equation is then: 

(𝜎𝑑)𝑇 = 𝜎𝑟 + 𝜎𝑓 + 𝜎𝑜   .                                                             (1) 

 

Figure 3. Acting deformation resistances 

Radial stress σr  
The value of the radial stress is decisive for solution 
of the deformation resistance caused by force F. The 
equilibrium equations of the biaxially expanding element are 
used for determination of acting stresses, namely for cases of 
the cross-section expansion (reduction) of axially symmetrical 
components. Its graphical representation is shown in Fig. 4.  

As detailed in [Storozev 1971], the default equilibrium equation 
of the external and internal forces acting at normal direct 
towards surface of an element is:  

𝜎𝑛 ∙ 𝑆3 − 2𝜎𝑟 ∙ 𝑆1 ∙
𝑑𝛼

2
− 2𝜎𝜃 ∙ 𝑆2 ∙

𝑑𝜗

2
= 0                           (2) 

and its solution leads to the so-called Laplace's equation (Eq. 3). 
This equation takes into account the load component 
by the normal pressure from the tool 

𝜎𝑛

𝑡0
−

𝜎𝑟

𝑅𝑟
−

𝜎𝜃

𝑅𝜃
= 0                                                                           (3) 

where σn is normal stress (pressure) [MPa], Rr is radius 
of meridional curve [mm], Rθ is radius of curve in the 
circumferential direction [mm], t0 is initial wall thickness [mm] 
and S1, S2, S3 are surfaces of element [mm2]. 

In the meridional (radial) direct, the friction (s = σn) is taken 
into account at contact surface and then the initial equilibrium 
equation of forces has form: 

(𝜎𝑟 + 𝑑𝜎𝑟) ∙ 𝑆1 − 𝜎𝑟 ∙ 𝑆1 − 2𝜎𝜃 ∙ 𝑆2 ∙
𝑑𝜃

2
− 𝜇 ∙ 𝜎𝑛 ∙ 𝑆3 = 0        (4) 

where μ is coefficient of friction [-], dα, dθ are the angles 
of element [°], see Fig. 4. 

And after rearrangement, we obtain: 

𝑅𝑥
𝑑𝜎𝑟

𝑑𝑅𝑥
+ 𝜎𝑟 − 𝜎𝜃 −

𝜇∙𝑅𝑥

sin 𝛼
∙ (

𝜎𝑟

𝑅𝑟
+

𝜎𝜃

𝑅𝜃
) = 0                              (5) 

 

Figure 4. Geometry of element [Samek 2011] 

The situation is simpler in case of the conical extension, 

because the surface curve of a cone is a straight line. So, Rr = . 
Under these circumstances the Equation (3) and (5) can be 
adjusted on the simpler shapes [Gorbunov 1981], [Marciniak 
2002], [Forejt 2006], [Popov 1968] namely: 

𝜎𝜃

𝑅𝜃
=

𝜎𝑛

𝑡0
                                                                                              (6) 

𝑅𝑥
𝑑𝜎𝑟

𝑑𝑅𝑥
+ 𝜎𝑟 − 𝜎𝜃 −

𝜇∙𝑅𝑥∙𝜎𝑛

t0∙sin 𝛼
= 0                                                (7) 

The equations for the main stresses will be obtained by the 
common solution of the Equations (6) and (7) with use the law 

of plasticity σ - σr = σk. Then, the final expression for the 
circumferential stress is: 

𝜎𝜃 = 𝜎𝑘 {1 − (1 +
tan 𝛼

𝜇
) ∙ [1 − (

𝑅𝑥

𝑅𝑣
)
𝜇∙cot 𝛼

]}                    (8) 

and for the important radial stress: 

𝜎𝑟 = −𝜎𝑘 (1 +
tan𝛼

𝜇
) ∙ [1 − (

𝑅𝑥

𝑅𝑣
)
𝜇∙cot 𝛼

]                              (9) 

As mentioned above, the radial stress σr is determinant for the 
determination of the total deformation resistance (σd)c. As can 
be seen in Fig. 2, the radial stress has pressure character (in Eq. 
9 the negative sign) with maximum at the radius Rx = r. 

It is also necessary to take into account the strain hardening 
of the material during calculation of the deformation 
resistance. The solution is: the yield stress σk in Equation (9) will 
be substituted by mean value of yield strength namely for the 
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area between points 2 - 3. The exponential or linear 
approximation is possible to use for determination of the mean 
value of yield strength. In case of linear approximation, 
the general approximation equation is: 

𝜎 = 𝜎𝑘𝑒 + �̅� ∙ 𝜀𝜃                                                                         (10) 

where �̅� is modulus of work hardening [MPa] and it can be 
expressed as: 

�̅� =
2

1+𝑛
∙ 𝐾 ∙ 𝑛𝑛                                                                          (11) 

σke is an approximated yield stress. The expression for its 
calculation is following: 

𝜎𝑘𝑒 =
1−𝑛

1+𝑛
∙ 𝐾 ∙ 𝑛𝑛                                                                       (12) 

where K is strength coefficient [MPa], n is work hardening 
exponent [-]. 

At the beginning of the conical part, where Rx = r (point 2 

in Fig. 2), the circumferential strain is zero (ε = 0). When this 
zero value of the strain is substituted into Equation (10), then 
this approximation equation will take the form: 

(𝜎)´ = 𝜎𝑘𝑒                                                                                       (13) 

The value of the circumferential strain is maximal at the place 
of the maximal expanding of tube (point 3). The radius Rx = Rv 

and the value of the strain is (ε)max = (Rv – r) / r. According to 
Eq. (10) then the maximum value of the actual stress is 
expressed by the formula: 

(𝜎)´´ = 𝜎𝑘𝑒 + �̅� (
𝑅𝑣−𝑟

𝑟
)                                                            (14) 

The mean value of yield strength will be determined by using 
simple expression: 

(𝜎)𝑚𝑖𝑑 =
(�̅�)´+(�̅�)´´

2
                                                                       (15) 

After substituting Eq. (13) and (14) into Eq. (15) and follow up 
adjustment, the mean value of yield strength will be given 
by equation:  

(𝜎)𝑚𝑖𝑑 = 𝜎𝑘𝑒 +
�̅�

2
(
𝑅𝑣−𝑟

𝑟
)                                                          (16) 

Then the final expression for the maximum radial stress 
corresponding with the beginning of the formation of cones is 
following: 

(𝜎𝑟)𝑚𝑎𝑥 = [𝜎𝑘𝑒 +
�̅�

2
∙ (

𝑅𝑣−𝑟

𝑟
)] ∙ (1 +

tan𝛼

𝜇
)  

                     ∙ [1 − (
𝑟

𝑅𝑣
)
𝜇cot 𝛼

]                                                      (17) 

Bending stress σo  
As shown in Fig. 1b or better in Fig. 3, the bending and follow-
up straightening of tube wall occur between points 1 and 2. 
The influence of the bending and follow-up straightening of the 
wall on the radius rm can be expressed by means of quasi 
bending stress, which is based on the deep drawing theory 
of cylindrical cups [Storozev 1971]. This issue is solved 

by considering the narrow belt as element for illustration 
of the acting stresses. The total bending stress, which is 
comprised of the bending stress (σo)I and straightening during 
stress (σo)II, can be written: 

(𝜎𝑜)𝐼 + (𝜎𝑜)𝐼𝐼 =
𝜎𝑘∙𝑡0

2∙𝑟𝑚+𝑡0
                                                          (18) 

Influence of friction 
The friction occurs at the contact area between the tube and 
the tool during the forming process. This is the area between 
points 2 and 3 (the cone) and between points 1 and 2 
(the radius). The friction between points 1-2 is called a belt 
friction. The effect of the friction on the cone part has been 
counted during the deriving of the equation for radial stress. 
The belt friction is given by factor eμβ, where e is Euler´s 
constant (≈ 2.718), μ is coefficient of friction [-], β is angle of 
contact [rad], see Fig. 3. According to [Storozev 1971] or 
[Marciniak 2002] it is possible to think that the friction factor 
eμβ is affecting all components of the total deformation 
resistance.  

(𝜎𝑑)𝑇 = [(𝜎𝑟)𝑚𝑎𝑥 + (𝜎𝑜)𝐼 + (𝜎𝑜)𝐼𝐼] ∙ 𝑒
𝜇𝛽                    (19) 

Taking into account the Equations (17) and (18), the total 
deformation resistance can be expressed by the following final 
equation: 

(𝜎𝑑)𝑇 = {[𝜎𝑘𝑒 +
�̅�

2
∙ (

𝑅𝑣−𝑟

𝑟
)] ∙ [(1 +

tan𝛼

𝜇
) ∙ (1 − (

𝑟

𝑅𝑣
)
𝜇 cot 𝛼

)] +

(
𝜎𝑘∙𝑡0

2𝑟𝑚+𝑡0
)} ∙ 𝑒𝜇𝛽                                                                                (20) 

 

2.3 Forming force 

The necessary force must correspond with the total 
deformation resistance, which is shifted into the place at the 
beginning of the tube forming, more specifically to the point 1. 
Generally, the force can be written as the product of stress and 
the surface on which it acts: 

𝐹 = (𝜎𝑑)𝑇 ∙ 2 ∙ 𝜋 ∙ 𝑟𝑠 ∙ 𝑡0                                                           (21) 

where rs is initial middle radius of tube [mm]. 

3 EXPERIMENTS  

An experimental test of the tube flaring process was carried out 
to verify the theory. The tube speciments were made of 
stainless steel 1.4301. Dimensions of the sample were: outside 
diameter D=28 mm, length L=85 mm and wall thickness t0 = 1 
mm. The forming mandrel (punch) was designed and 
manufactured for the experiment. The apical angle was 60 ° 
and the crossing radius was (rm1) = 5 mm. The model of this 
mandrel is in Fig. 5. 

                       

Figure 5. Model of forming mandrel 
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The experiments have been realized at tensile testing machine 
Zwick/Roell Z100, the ram speed was 1mm/sec. The values of 
the force and the displacement of the ram were recorded for 
each sample. A total of 5 samples with the designation SZV1 ÷ 5 
were formed. The samples were formed successively 
at different heights cones. The height of the made cone was 
dependent on the value of the displacement zi of the ram. The 
values of the displacement have been chosen: z1 =5 mm, z2 = 10 
mm, z3 = 15 mm, z4 = 20 mm and z5 = 25 mm. The lubricant 
PRESSPATE SEM 95/800 was used to reduce the friction 
between the tube and the tool surface. To determine the 
mechanical properties of the researched tube, the tensile tests 
of tube were carried out. Test samples were made according to 
standard [CSN EN ISO 6892-1, 2010] in the shape of cut-outs 
of the tubes. The results of this test are listed in Table 1. 

 

Material stainless steel 1.4301 

Proof strenght Rp0.2 [MPa] 

Tensile strength Rm [MPa] 

Work hardening exponent  n [-] 

Strength coefficient  K [MPa] 

Ductility  A [%] 

385 

660 

0,475 

1675 

48 

Table 1. Mechanical properties of material 

 

3.1 Experimental results 

The principled schema of the tube flaring process is shown in 
Fig. 1a. The tube sample was slid onto the cone part of the 
forming mandrel by applying pressure from the ram machine. 
Ram of the machine was always stopped after driving the 
selected values of the stroke zi. Because the stroke of the ram 
machine was different for each sample, the various heights of 
cones were created. The made samples are shown in Fig. 6 as 
models and in Fig. 7 as real specimens.  

 

 

Figure 6. Models of formed samples 

 

 

Figure 7. Real samples 

The values of forming forces Fex and the displacements of ram zi 
were written during every forming process. Subsequently, the 
work curve F=f(z) was created from these values for each 
sample. After finishing the experiment the value of the maximal 
diameter Dv of the cone was measured. The wall thickness 
corresponding to that diameter tmin was measured too. The 

measured values are listed in Tab. 2. The work curves of all 
samples are shown in Fig. 8. The value of the friction coefficient 
was chosen as 0.15. 

 

sample zi [mm] Fex [N] Dv [mm] tmin [mm] 

SZV1 5 9 216.3 31.24 0.82 

SZV2 10 18 461.6 35.10 0.78 

SZV3 15 27 324 38.62 0.73 

SZV4 20 36 592 42.14 0.69 

Table 2. Table of measured values 

 

 

Figure 8. Work curves 

As can be seen in Fig. 6 or Fig. 7, the cross wave has been 
created at the last sample. This wave was created when the 
displacement of the ram was about 21 mm. Therefore, this 
sample has not been subjected to further analysis. 

 

3.2 Calculated values 

The equations determined in the chapter 2 of this article were 
used for theoretical calculation of the deformation resistance 
and the forming force. Specifically Equations (20) and (21) were 
used. 

In order to compare the size of experimentally achieved 
forming force with the theoretically calculated force, it was 
necessary to substitute corresponding geometric and material 
parameters of real samples into these theoretical equations. 
These values can be found in Tab. 1 and Tab. 2. The values of 
the experimentally achieved forming force as well as the values 
of calculated forces of each sample are listed in Tab. 3. There 
are the percentage differences between the calculated and 
experimental forces too.  

 

sample (σd)c [MPa] Fex [N] Fcal [N] ΔF [%] 

SZV1 115.30 9 216.3 8 459.6 8.2 

SZV2 225.38 18 461.6 16 536.4 10.4 

SZV3 342.50 27 324 25 131.5 8.0 

SZV4 470.50 36 592 34 520.2 5.6 

Table 3. Comparative table of measured and calculated values 
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4 DISCUSSION  

As shown in Tab. 3, the sizes of theoretical forces are different 
from the calculated forces. The percentage difference is around 
8 ÷ 10 %. This difference is not great, but concurrently it cannot 
be neglected. Below are a few reasons that could be causing 
the different results. 

a) The material characteristic as yield strength σk, strength 
coefficient K or work hardening exponent n were obtained from 
the tensile test. This test is based on an uniaxial loading of the 
samples. This loading is different from the mechanical loading 
of tubes in practice. There is a biaxial loading mostly. Therefore, 
the values obtained from the uniaxial tests can insert a mistake 
in the calculations at the very beginning. It would be preferable 
to use a biaxial technological test to obtain more correct 
material characteristics, for example a bulge hydroforming.  

b) The definition of the bending stress acting on the crossing 
radius (between cylindrical and conical part) is simplified. This 
definition is based on the theory of deep drawing  of cylindrical 
cups. Here, the bending stress is defined on the element, which 
has shape of the narrow strip. In fact, this cross area has a 
concave toroidal shape with axial symmetry. The equilibrium of 
the forces acting on this toroidal element would has to be 
solved with use of other coordinate system. Then the 
theoretical equations would be very complicated. 

c) The value of the friction coefficient was chosen according to 
the type of lubricant and previous experiences. For the 
verification of the correctness of this choice it would be 
necessary to carry out other additional experiments. 

The above points could affect the size of the total deformation 
resistance and hence of the size of the required forming force. 
For their resolving it is necessary to perform next experiments 
and the theoretical analyses. Some of them are planned within 
the next investigation. 

5 CONCLUSIONS  

The knowledge of forming forces´ size for the manufactured 
components of different shapes is very important. The 
definition of this force is associated with the determination of 
the deformation resistance, which the forming force has to 
overcome. In this study, the methodology of the determination 
of the theoretical equation of the total deformation resistance 
was presented. This methodology consists of defining of the 
sub-resistances acting during forming process. The theoretical 
forming forces were calculated by these theoretical equations 
namely for the concrete geometry of test samples. These 
calculated values were subsequently compared with the real 
values, which were obtained from the experiments. The values 
of the theoretical and real forces are different. This difference 
is around 10 %. The difference is probably caused by the input 
simplifications as the material model obtained from a tensile 
test tube, the determination of the bending stress based on 
analyses of stress state of the narrow belt element and the 
choosing of the friction coefficient. All these factors influence 
the calculation of individual stresses (resistances), and 
ultimately the size of the forming force. For more accurate 
results, it would be necessary to correct false simplified input 
parameters. For this is, however, necessary to carry out much 
more experiments and theoretical analysis. Some of them are 
planned as part of continuation of this research. 
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