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The introduction of this article describes the significance and 
characteristic of the Fire Plume virtual origin, which is used in 
the assessment of certain local fire parameters.  Based on 
selected characteristics for determining the rising of axial 
temperature, gas flow rate and mass volume of smoke in a Fire 
Plume, the necessity of the use of virtual origin was assessed. 
The results were compared using selected statistical methods. 
The study was done for a fire thermal outputs from 1000 to 
5000 kW and heights above the flammable material surface 
from 5 to 50 m. Based on the delimitation of deviation 
acceptability limits, where the variation coefficient value was 
selected up to 10% and the percentage deviation up to 15%, 
regression power and linear functions were derive, which, 
based on magnitude of the released heat flow, determine the 
minimal height above the fuel surface at which the Fire Plume 
virtual origin can be omitted under presumed conditions. At the 
same time, there are principles affecting the necessity of use 
of Fire Plume virtual origin in practical applications presented 
which may be designs of smoke and heat systems, respectively 
other fire safety equipment. 
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1 INTRODUCTION 
During assessment of the fire propagation phase we typically 
speak of so-called local fire [ISO/TS 16 733 2006]. A developing 
fire is accompanied by the origin and evolvement of a flue gas 
column, which is called a Fire Plume. 
A Fire Plume can be divided into three basic zones, i.e. flame 
zone, transition zone and smoke zone. The Fire Plume was 
studied from different viewpoints, e.g. geometry, temperature, 
gas flow rate and gas mass volume. [Heskestad 2016, Hosser 
2013] 
The original research of the Fire Plume was developed by 
numerous researchers. The correlation of flame height and 
volume of sucked air into the Fire Plume was assessed by G. 
Heskestad [Heskestad 2016], significance and volume of sucked 
air into the Fire Plume, or sucking of air in the near and far part 
of the Fire Plume was solved by E. E. Zukoski, T. Kubota and B. 
Cetegen [Zukoski 1981, Cetegen 2007], the Fire Plume in terms 
of development dynamics was studied by G. Heskestad 

[Heskestad 1998], etc. The original researches of the Fire Plume 
were follow-up by further research, e.g. a recent work by X. 
Zhang and coll., involving the relationship between flame 
height and axial temperature of a turbulent line source of Fire 
Plume [Zhang 2014]. Specific current research works include 
work by T. Beji and coll., involving the assessment of rate of 
smoke filling in large volume spaces [Beji 2012] or H. Miloua 
and coll., focused on evaluation of different numerical 
approaches for ventilation of tunnel structures [Miloua 2011]. 
The Fire Plume virtual origin zv is used for assessment of the 
characteristics of the respective zones. [Heskestad 2016, Hosser 
2013] 
Works done by G. Heskestad can be especially ranked among 
the original works focusing on the Fire Plume virtual origin. The 
works involved mainly the correlation between the Fire Plume 
virtual origin and the mean flame height [Heskestad 1983]. 
Works by other authors follow-up onto the work of Heskestad, 
focusing on researching the Fire Plume virtual origin under 
specific conditions. For example, the work focused on 
researching the Fire Plume virtual origin in a turbulent 
environment done by G. R. Hunt and N. G. Kaye [Hunt 2001] or 
experimental works related to deriving sub-ceiling gas 
temperature affected by a cumulated gas top layer, where a 
modified Fire Plume virtual origin was derived, authored by Z. 
H. Gao and coll. [Gao 2015], or the study involving the 
relationship of flame height from openings during insufficiently 
ventilated fires, which required additional determination of the 
Fire Plume virtual origin, authored by F. Tang and coll. [Tang 
2012]. 
It is clear that the Fire Plume virtual origin was, and no doubt, 
will continue to be the subject of interest of experts in this field 
of research. [Malerova 2014] 
The aim of this article is to assess, on selected Fire Plume 
characteristics, the necessity of use of virtual origin for local 
fire. 

2 SIGNIFICANCE OF FIRE PLUME VIRTUAL ORIGIN 
Originally (historically) so-called point sources of fires with low 
thermal outputs were researched. However, in real situations 
we also encounter different geometrical shapes of fires with 
large thermal outputs. The Fire Plume virtual origin enables 
the transformation of originally derived expressions in relation 
to real fires. [Heskestad 2016, ISO 16 734 2006] 
The virtual origin “demonstrates” a Fire Plume point source, 
above which flames are “starting to appear”. The virtual origin 
is located above the surface of flammable materials (reaches 
positive values) or under the surface of flammable materials 
(reaches negative values). [ISO 16 734 2006] 

3 METHOD 

3.1 Characteristic of Fire Plume Virtual Origin 
The Fire Plume virtual origin in dimensionless form is typically 
described by the equation [ISO 16 734 2006]: 

D

Q
YX

D

zv 5/2

)(6.1502.1   (1) 

where  zv Fire Plume virtual origin (m) 
 D fire diameter (m) 
 X coefficient (m.kJ-2/5.s2/5) 
 Y coefficient (m.kJ-2/5.s2/5) 
 Q thermal flow (kW) 
 
The coefficients in equation (1) can be determined using the 
following equations [ISO 16 734 2006]: 
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where  cp specific thermal capacity (kJ.kg-1.K-1) 
 Ta ambient temperature (K) 
 g gravity acceleration (m.s-2) 

 a density of ambient air (kg.m-3) 

 Hc combustion heat (kJ.kg-1) 
 s  stoichiometric ratio of air and fuel (-) 

 convective ratio of released heat flow (-) 
TOL axial temperature of mean flame height (K) 

TOL increase of axial temperature of mean 
flame height (K) 

 
Under normal atmospheric conditions, i.e. g = 9,81 m.s-2, cp = 

1,00 kJ.kg-1.K-1, a = 1,2 kg.m-3, Ta = 293 K,  = 0,7, TOL = 500 

K and Hs/s = 3000 kj.kg-1, equation (1) can be modified to [ISO 
16 734 2006]:  

D

Q

D

zv 5/2

083.002.1   (5) 

or 

5/2083.002.1 QDzv   (6) 

 
Equation (6) is used most frequently in practice.  
Under normal atmospheric conditions the Fire Plume virtual 
origin, dependant on the flame height, can be described by 
equation [ISO 16 734 2006]: 

5/2175.0 Cv QLz   (7) 

QQC   (8) 

where  L flame height (m) 
 Qc convective heat flow ratio (kW) 

3.2 Method of Assessment of Necessity of Use of Fire Plume 
Virtual Origin 

The necessity of use of the virtual origin was assessed for: 

 increase of Fire Plume axial temperature,  

 Fire Plume flow rate, 

 Fire Plume smoke mass volume. 

The said areas were compared for a release heat flow of 1000, 
2000, 3000, 4000 and 5000 kW and height above flammable 
material surface of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 m. 
The convective ratio of heat flow was 0.7, heat flow density 250 
kW.m-2. The values were intentionally selected in areas which 
are characteristic for a developing, i.e. local, fire. In principle, 
they correspond to conditions presented in common technical 
standards [VDI 6019 2006]. 
The results of selected Fire Plume characteristics were assessed 
using the following simple statistical methods: 

 arithmetic mean,  

 dispersion,  

 standard deviation,  

 variation coefficient Vx and  

 percentage difference of values.  

The significance of use of the virtual origin for the increase of 
the Fire Plume axial temperature was assessed using the 
following equations, which are modified for normal 
atmospheric conditions [ISO 16 734 2006, Karlsson 2000]: 
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where  Taxis increase of Fire Plume axial temperature (K) 
 z  height above flammable material surface (m) 
 
By omitting the Fire Plume virtual origin, equation (9) can be 
modified to: 

  35
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The increase of Fire Plume axial temperature and variation 
coefficient of these values determined by equations (9) and 
(10) are illustrated in Figure 1. 
 

 

Figure 1. Increase of Fire Plume axial temperature and variation 

coefficient for compared equations 

The significance of use of the virtual origin for the Fire Plume 
flow rate was assessed using the following equations, which are 
modified for normal atmospheric conditions [ISO 16 734 2006, 
Karlsson 2000]: 

  31
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
  (11) 

where  uaxis Fire Plume flow axial rate (m.s-1) 
 
By omitting the Fire Plume virtual origin, equation (11) can be 
modified to: 

  31

31

03.1
z

Q
T c
axis   (12) 

 
The flow rate of gases in the Fire Plume and variation 
coefficient of these values determined by equations (11) and 
(12) are illustrated in Figure 2. 
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Figure 2. Axial flow rate of gases in the Fire Plume and variation 
coefficient for compared equations 

The Fire Plume smoke mass volume can be determined using 
equations [Hosser 2013, Kucera 2009, Heskestad 1984]: 

  3531071.0 vce zzQm   (13) 

where  me volume of sucked air (in the sense of [Heskestad 
2016], it can also be considered as smoke mass 
volume) (kg.s-1) 

 
By omitting the Fire Plume virtual origin, equation (13) can be 
modified to: 

3531071.0 zQm ce   (14) 

 
The Fire Plume smoke mass volume and variation coefficient of 
these values determined by equations (13) and (14) are 
illustrated in Figure 3. 
 

 

Figure 3. Fire Plume smoke mass volume and variation coefficient for 
compared equations 

4 EVALUATION OF RESULTS, FUNCTIONAL RELATION DESIGN 
The results presented in Figures 1, 2 and 3 demonstrate that 
the change in variation coefficient Vx is functionally dependent 
on f = (Q; z). 
To derive the functional relation it was necessary to define the 
“tolerance zone”, i.e. acceptable difference between the 
compared values by considering or omitting the Fire Plume 
virtual origin. A 10% variation coefficient, which corresponds to 
approximately 15% difference between values in the compared 
cases, was selected as the acceptable difference. The said limits 
were selected based on the presumption that the difference in 
values in the said interval is practically negligible. 

Based on the defined limits, two functional relations were 
derived. The first relation can be described by a regression 
power function: 

1
10
3

32


 

z

Q
 (15) 

 
The minimum height above the flammable material surface 
z, at which the Fire Plume virtual origin can be omitted, can 
then be described using equation: 

3 32 10 Qz  (16) 

 
The second relation can be described by the regression linear 
function:  

5.760267.0  Q
z

Q
 (17) 

 
The minimum height above the flammable material surface 
z, at which the Fire Plume virtual origin can be omitted, can 
then be described using equation: 

5.760267.0 


Q

Q
z  (18) 

 
Equations (16) and (18) determine the minimal height above 
the flammable material surface z, at which maximum 10% 
variation coefficient is achieved while omitting the Fire Plume 
virtual origin when determining two out of three 
characteristics, i.e. heat increase of Fire Plume axial 
temperature and Fire Plume mass volume. As was said above, 
the difference in compared values is approximately 15%.  
For the third Fire Plume characteristic, which is the axial rate, a 
variation coefficient up to 2% and percentage deviation up to 
5% are achieved when applying equations (16) and (18).  

5 DISCUSSION 
The possibility of omitting the virtual origin was assessed in 
selected Fire Plume characteristics, i.e. increase of axial 

temperature Taxis, axial flow rate uaxis, and Fire Plume smoke 
mass volume me. The said characteristics can be considered 
representative and typically used to characterise a Fire Plume. 
The results obtained by the compared equations were 
evaluated using selected mathematic-statistical methods. The 
variation coefficient Vx, which is the ratio of the standard 
deviation and arithmetic mean, can be considered as a suitable 
indicator characterising the deviation between compared 
values. The increasing value of the variation coefficient 
indicates a higher deviation between the values. The deviation 
was also additionally expressed by percentage difference. The 
selected methods can be considered adequate for the purpose 
of assessing the deviation between the compared equations. 
Figures 1, 2 and 3 clearly show that the variation coefficient 
value significantly decreases with the increasing height above 
the flammable material surface z. The variation coefficient 
value decreases in the case of increase of the axial temperature 
and Fire Plume mass volume from tens of percent to units. In 
the case of Fire Plume axial rate the value drops from units to 
tenths of units. The Fire Plume virtual origin loses significance 
with an increasing height above the fuel surface.  
From the figures it is also evident that the variation coefficient 
reaches lower values in all cases at lower heat flow values. On 
the contrary, higher heat flow values lead to higher variation 
coefficient values and thereby also higher deviations between 
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compared equations. The Fire Plume virtual origin loses 
significance with the decreasing heat flow value.  
Providing the acceptance of the “defined limits of deviation 
acceptability”, which are variation coefficient value 10% and 
percentage deviation value 15%, it can be stated that for heat 
outputs from 1000 to 5000 kW and heights above the 
flammable surface from approximately 10 to 25 m the Fire 
Plume virtual origin can be omitted (depending on the value of 
the heat flow). For higher heat output the height above the 
flammable material surface for possible omission of the Fire 
Plume virtual origin will be greater (e.g. for heat output 1000 
kW the Fire Plume virtual origin can be omitted at a height 
of 10 m, for heat output 5000 kW the Fire Plume virtual origin 
can be omitted at a height of 25 m). The described relations for 
omission of the virtual origin relate to the increase of the axial 
temperature and smoke mass volume of the Fire Plume.  
The significance of the Fire Plume virtual origin is substantially 
lower than for the characteristics presented above. Using 
derived functional relations and discussed heights above the 
flammable material surface from 10 to 25 m, the variation 
coefficient value will not exceed 2%. The presented results lead 
to the consideration whether it is at all necessary to consider 
the virtual origin when determining the axial rate of a Fire 
Plume.  
The functional relation for determining the minimum height 
above flammable material surface at which the virtual origin 
can be omitted, were derived for heat outputs from 1000 to 
5000 kW and heights above the flammable material surface 
from 5 to 50 m. Their use was verified with a positive result also 
for fire lower heat outputs at the defined heights. On the 
contrary, the presented functional relations are not usable for 
higher heat outputs. 

6 CONCLUSION 
The article describes the mathematical expression, significance 
and possible use of the Fire Plume virtual origin. The possible 
omission of the virtual origin was evaluated for selected Fire 
Plume characteristics using defined mathematical-statistical 
methods.  
Based on assessment of deviations, general principles were 
described at which the Fire Plume virtual origin loses 
significance, i.e. increasing height above flammable material 
height and decreasing heat output.  
At the same time, functional relations were derived for 
determining the minimum height above flammable material 
surface at which the Fire Plume virtual origin can be omitted. 
The derived functional relations have a practical use. 
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