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Model adaptive controllers such as Model Predictive 
Control or Model Reference Adaptive Control need a 
precise mathematical model of the controlled system 
adaptable in real-time. Systems consisting of a hydraulic 4-
way proportional valve and a linear motor have non-linear 
behaviour such as hysteresis of and valve, death zone of a 
valve spool, time delay of a data transfer and control unit, 
dependence on coils temperature and oil temperature and 
nonlinear flow characteristics. This paper introduces 
modified Neuro-Fuzzy network as a mathematical adaptive 
model of a hydraulic system with above mentioned 
properties. The paper presents the basic architecture of 
Neuro-Fuzzy network which consists of artificial neural 
units a fuzzy layer and introduces modifications focused on 
identification. The basic real-time learning method such as 
Normalized Gradient Descent is introduced specially for the 
designed Neuro-Fuzzy Network. Identification and real time 
learning abilities of the model were tested on the hydraulic 
stand. 
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1 INTRODUCTION 

Systems consisting of a hydraulic 4-way proportional valve and 
a linear hydraulic motor are usually controlled by PID or their 
modifications. Designed controller has to fulfil requirements for 
the control criteria and also has to be designed with robust 
control for changing behaviour of the controlled system. Using 
classical control strategies can result in following: 

• Each controller for each machine has to be set 
separately. 

• The controller of machine has to be reconfigured 
during the machine lifetime. 

• There are requirements for linearity of the systems 
components. 

All above mentioned points increase the price of the machine 
or the price for their service. 
That’s the motivation for designing nonlinear adaptive 
controllers for hydraulic systems. Nonlinear adaptive 
controllers such as Model Predictive Control (MPC) [YANG 
2016] or Model Reference Adaptive Control (MRAC) [HE 2012], 
[YANG 2011] are able to change their parameters during 
process according to changing systems behaviour. They are also 
able to partly calculate with nonlinear systems. Using nonlinear 
adaptive controllers is not meant to promise high precision of 
controlling but it promises low price of machines. 

Nonlinear adaptive controllers need a precise mathematical 
model of the controlled system adaptable in real-time. This 
article presents the basic architecture of Neuro-Fuzzy network 
which consists of artificial neural units [YANG 2016],[GUPTA 
2004] and fuzzy layer, and introduces modifications focused on 
identification of hydraulic systems. The basic real-time learning 
method such as Normalized Gradient Descent [BUKOVSKY 
2016] is introduced specially for the designed Neuro-Fuzzy 
Network. Identification and real-time learning abilities of the 
model were tested on the hydraulic stand. 

2 PROPERTIES OF 4-WAY PROPORTIONAL VALVE  

One of the most important property of the valve is their flow 
characteristic, dependence of flow through the valve on the 
spool position or current to the coil. We expect that spool is 
much faster than the hydraulic motor so it is possible to neglect 
dynamic of the spool. The flow through the valve isn't directly 
proportional to the current in the coil for following reasons: 

• Position of the spool depends on force-current 
characteristics of the coil and the temperature of the 
coil. 

• The channel opening is not directly proportional to 
the position of the spool 

• The flow depends on Bernoulli's equation 
• The Figure 1 presents measured flow-characteristics 

of the valve. 
There is obvious offset depending on minimum opening of the 
channels, hysteresis depending on the spool and the magnet 
friction and nonlinear characteristics. 

 
Figure 1. Current-Flow Characteristic of a Valve Hydraforce SP08-47C- 
Spool-Type, 4-Way, 3-Position, Closed Center 

3 LNU-FUZZY MODEL 

The main advantage of Artificial Neural Network is their 
universality of use and their ability to learn. But they are not as 
suitable for using in real-time process including in simple 
control units because they can be too large and their learning 
can be too computationally demanding. Fuzzy sets represent 
intuitive approach for when you one has mainly only 
theoretical or verbal knowledge. For example in our case: "The 
slope of the Current-Flow characteristic depends on actual 
current and its derivation." According that it is possible to build 
a space of fuzzy values. By combining the simplest neural model 
Linear Neural Units (LNUs) and output fuzzy layer a 
mathematical model was built with following advantages: 
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Even though the model is nonlinear it is linear according to 
LNUs weights, so it is possible to teach LNUs with simple 
optimization algorithms that search only for local minimums 
such as Normalized Gradient Descent (NGD). 

The size of the model is smaller than neural networks with 
hidden layers 

Building the model can be done intuitively according to 
technical knowledge of the system and it is also possible to use 
machine learning. 

Linear Neural Unit (LNU) is the simplest HONU model 
[BUKOVSKY 2007]. The formula without activation function is 
following: 
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Where  iy  is the neural output, w is a vector of neural 

weights. x  is a input vector into LNU and for systems with 1 
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Where y  is the vector of recent ny   samples of piston 

position, 
( ) ( ) ( 1)k k ku u u    , u  is the vector of recent 

nu  samples of control input and  is the input delay of the 

system. The reason why u  is used here instead of u is in 

hysteresis. Hysteresis moves the absolute value of the input 

signal, but u is independent of that. 

The slope of the Current-Flow characteristic depends on actual 
input, hence the fuzzy variable was chosen as the delayed 

input
( )ku  . The space of the fuzzy variable is shown in Chyba! 

Nenalezen zdroj odkazů. where each of fuzzy set i  belongs to 

one of the LNU. The final built Neuro-Fuzzy model is in Chyba! 
Nenalezen zdroj odkazů.. 

 
Figure 2. Fuzzy Sets 

 
 
Figure3. LNU-Fuzzy Model 

Fuzzy membership i  to a given fuzzy set i  is calculated as 

follows: 
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Where n the number of is fuzzy sets and iS is the center 

position of the fuzzy set i . The final output of the model is 

calculated as a center of maxim as follows: 
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LNU-Fuzzy model given be (1),(2) and (4) can be rewritten to 
the matrix form as follows: 

( ) ( ) ( ) ( )k k k ky   α W x  ( 5 ) 

Where the neural weights 
jiw of the matrix W have to learn 

in real-time. For that Normalized Gradient Descent algorithm 
was chosen given by (6). 
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Where Q is the cost function where refe is the reference error 

between real output of the system 
refy and the output from 

the model y . Putting (5) and (7) into (6) we get the following 

formula for weights adaption. 
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According [3] and (7) is the normalized learning rate follows for 
this case: 

( 1)

( 1) ( 1) ( 1) ( 1)

norm k T T

k k k k







   


   α α x x

 ( 9 ) 

Where  is the learning rate and is dumping small value. 

4 IDENTIFICATION OF THE HYDRAULIC STAND 

The experimental adaptive identification was tested on 
hydraulic stand shown in Figure 4 with hydraulic schema Figure 
5. The lower hydraulic motor controlled by 4-way proportional 
valve in Figure 1 with the input signal u. The output signal was 
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the position of the lower piston y. The upper hydraulic motor 
was used as a constant load controlled by using pressure 
reducing valve. This arrangement of two hydraulic motors 
against each other simulating a hydraulic press. Important 
settings of the hydraulic stand and LNU-Fuzzy model are in 
Table 1. 

Learning rate 0.01   

y in x  20ny   

u in x  30nu   

Fuzzy sets 20n   

Pressure 1 1 50[ ]p bar  

Pressure 2 2 20[ ]p bar  

Max. force V1 1 1100[ ]VF N  

Max. force V2 2 400[ ]VF N  

Max. speed 1
150[ ]v mm s


   

 
Table 1. Hydraulic Stent and LNU-Fuzzy Model Settings 
 

 
 
Figure4. Hydraulic Stand 
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Figure5. Simplified Hydraulic Scheme 
 

For identification 2 data sets were measured. Output data was 
compared with output from the model given as a prediction 
from the 0.2s data. The first data are from controlling without 
load and the LNU-Fuzzy model was pre-trained for it in Chyba! 
Nenalezen zdroj odkazů.. The second data was with the load 
and was tested if and how quickly is the model able to adapt to 
these changes. Chyba! Nenalezen zdroj odkazů. shows data 
with load and the model output trained on the data without 
load. The position of the contact of the pistons and higher 
inaccuracy of the model is visible. 

 
 
Figure6. Trained Model without a Load, - line reference data, -- line 
predicted output  
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Figure7. Trained Model with a Load, - line reference data, -- line 
predicted output  
 

Figure 8 shows model adapting to new data with load. 
Comparing Figure 7 and Figure 8 shows the ability to adapt to 
new data or new behaviour with load. 
 

 
 
Figure 8. Adaptive Model with a Load, - line reference data, -- line 
predicted output  

5 CONCLUSIONS 

This article presented one of the options for identification of a 
hydraulic system consisting of a 4-way electromagnetic 
proportional valve and a linear hydraulic motor. Using Linear 
Neural Units and fuzzy sets a nonlinear model was built. The 
main reasoning for that is using adaptive controllers such as 
MPC or MRAC. 
The article briefly introduces properties of a 4-way proportional 
valve which should be respected in the model. The article 
explained the basics of neural units and fuzzy sets and LNU-
Fuzzy model was created. A specialized augmented Normalized 
Gradient Descent was used for LNU-Fuzzy model learning. 
In the last section the LNU-Fuzzy model was used for 
identification and their retraining after changing the load on 
the stand simulating a machine press. 
Using LNU-Fuzzy model as a model of hydraulic system brings 
following advantages: 

• Model is adaptable during process and during lifetime 
of the machine and it's not necessary to retune it. 

• Model is linear according to neural weights so it's 
able to learn by using simple local searching 
algorithms such as mentioned NGD. 

• Model is not as big as universal neural networks with 
hidden layer or as a High Order Neural Units. 
Therefore it is more suitable for use in simple 
controllers. 

Disadvantages of this type of modelling must be mentioned, 
and are following: 

• The parameters of this type of the model don’t have 
any real meaning such as dumping, stiffness or mass. 
If the model doesn't work or stops working flawlessly 
it is hard to tell the reasons why or where the 
problem could be. Another problem can be brought 
by real-time learning. 

• For using in practise it should be ensured that the 
model can't be retrained to worse results. 
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