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This study is an introduction to the five-axis milling using 
polynomial interpolation approach. Progressive milling 
technologies using different spline interpolations in the control 
system Sinumerik 840D were compared for a defined number 
and distributions of the controls points of a planar curve. A tool 
trajectory for the five-axis CNC milling of a concave profile was 
generated as the superposition of the third order polynomials, 
that had been generated with a special algorithm in 
Mathematica. 
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INTRODUCTION 

Five-axis milling of the complex shapes is one of the most 
demanding and the most effective machining operation in term 
of the machining time. Very complex components can be 
machined in one operation without additional re-clamping 
[Méry 1997].  

Five-axis machines have to provide the accurate axis 
positioning, precise axis acceleration and deceleration and high 
rigidity during machining. Machines for high speed cutting 
(HSC) and high feed cutting (HFC) with their lighter mass allow 
achieve higher cutting speeds, feed speeds and higher 
acceleration rates compared to standard machines. However, 
application of high speed cutting or high feed cutting can result 
in self-exited vibrations that generate discontinuities in the tool 
path trajectory affect surface quality [Altintas 2014]. 

A design of the appropriate tool path trajectory for the five-axis 
machining is the basic prerequisite for the accuracy and quality 
of the final complex shape of the workpiece. Types of the 
trajectories are basically divided in to the linear interpolation, 
circular interpolation and different spline interpolations 
[Altintas 2014]. All types of the milling strategies prevail with 
some advantages and disadvantages. However, they differ in 
the continuity of the tool path and the ability to pass through 
control points defining machined surface fundamentally 
[Siemens manual 2004].  

1 THE BASIC ALGORITHM FOR GENERATING OF A 
POLYNOMIAL INTERPOLATIONS IN CNC MILLING 

1.1 Toolpath generation 

Toolpath generation has a direct impact on the surface quality 
of the machined component. Various surface shapes can be 
machined using the linear interpolation, circular interpolation 
or different spline interpolations (A-spline, B-spline, C-spline, 
NURBS). The linear interpolation, despite of its discontinuity in 
the curvature, is the most frequently applied strategy because 

of its easy to use [Msaddek 2014]. Depending on the curvature 
and complexity of the surface, the long path segments are 
divided into shorter discrete segments (linear or polynomial). 
The resulting toolpaths are generated by a CAM software and 
transformed through a post processor into a work coordinate 
system of the machine. It is necessary to ensure that generated 
program contains information about the positioning of the tool 
tip, directional and normal vector of the tool axis and the 
tangential infeed for each toolpath segment. The generation of 
the reference motion commands for individual axes is based on 
tool path planning, tangent infeed profile and a real position 
interpolation within servo control loops. The CAM system 
generates short segments from initial long spline paths. These 
short segments are preceded to CNC as linear toolpaths. If the 
system contains a real NURB interpolator (Non-Uniform 
Rational B-spline) then splines can be interpolated [Altintas 
2014]. The difference between these two methodologies is 
notable - the linear interpolation leads to discontinuous 
velocities, decelerations and accelerations at the nodes points. 
On the other hand, NURBS interpolator allows the smooth 
continuous tool paths based on the parameterized spline 
curves [Siemens manual 2005]. 

Some recent studies have examined an influence of the 
interpolation type on the complex shapes of the machined 
surfaces. Helleno and Schützer [Helleno 2006] examined the 
limits of the linear interpolations during machining of the 
moulds and presented benefits that can be related to the use of 
the spline interpolations. Meng-Shiun Tsai et al. [Tsai 2009] 
developed a new look-ahead algorithm with spline-fitting 
interpolation scheme which consists of the spline-fitting and 
acceleration and deceleration feed rate planning. Based on the 
methodology the conditions to ensure the continuity of the 
position, slope and curvature at each nodal point of the 
polynomial curve or linear segment are derived. Zhang et al. 
[Zhang 2011] introduced the parametrical cubic spline curve 
transitional approach to improve the machining efficiency 
within the permissible machining accuracy range for the high-
speed machining. Langeron et al. [Langeron 2004] provided a 
unique format for the computation of 5-axis toolpaths using the 
B-spline curves. Pateloup [Pateloup 2010] presented the B-
spline approximation of circle arcs and straight lines for pocket 
machining. As it is a very actual problematic many other studies 
have been published on this topic in the recent years. 

 

1.2 Types of the spline interpolation 

Splines belong to a group of the effective tool path functions 
allowing smooth and complex shapes. Spline curves consist of 
implicit equations or parametric functions. However, most of 
CAM systems use parametric forms of spline curves because of 
the practical control of the machine axis motions [Sencer 2003]. 
Basic spline curves which are used in the machine control 
system are A-spline (Akima spline), B-spline (Bezier spline), C-
spline (Cubic spline) and in some cases also general polynomial 
interpolation. However, the use of mentioned splines may not 
be the same for all control systems. 

A-spline  

A-spline directly passes through the node points of the curve 
but is not continuous in the curvature. A-spline interpolation is 
based on the polynomials of the third degree and given 
boundary conditions as showed in the equation (1) [Siemens 
manual 2004]. 

 

     (1)  
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B-spline 

Although the spline is called B-spline, it is actually NURBS 
interpolation. B-spline curves are basically free-form curves 
that consist of the segments expressed by Bezier curves, which 
are connected to each other with the highest degree of the 
continuity (the continuous first and second derivatives at the 
nodal points at least) [Msaddek 2014]. B-spline are determined 
by n+1 control points and by the degree p, which determines 
the degree of the individual arcs of the curve. B-spline does not 
pass directly through the nodal points of the control polygon, 
but only approaching them according to the “weight” specified 
in the control system [Siemens manual 2005]. The B-spline is 
always tangential to the control polygon at the start and end 
points and does not generate undesirable vibrations [Siemens 
manual 2004]. 

C-spline 

The C-spline is an interpolation by a cubic polynomial. C-spline 
passes directly through the nodal points of the curve and it is 
continuous in the curvature that means it has a low curvature 
variation [Msaddek 2014]. However, the C-spline is 
characterized by a high tendency to the oscillation. This spline 
is mainly used when nodal points belong to the analytically 
known curve [Siemens manual 2004]. 

Polynomial interpolation 

Polynomial interpolation is often mistakenly interchanged with 
spline interpolation, which also uses third-order polynomials, 
but in this case, it is not a kind of spline interpolation. In CNC 
milling the polynomial interpolation is mainly the interface for 
the programming of the externally created spline curves. This 
type of the interpolation can be used when curves or complex 
shapes are described only in the mathematical software such as 
MATLAB or Mathematica without need of the CAD models. 
Spline segments of the mathematically described curves can be 
programmed directly without need of the CNC system to 
compute polygon coefficients [Siemens manual 2004].  

The most commonly used is the third-degree polynomials but 
fifth degree polynomials can be eventually used if allowed by 
the control system. 

2 EXPERIMENTAL VERIFICATION  

2.1 Spline interpolation and polynomial interpolation in 2D 

In order to compare different spline interpolations with linear 
interpolation and polynomial interpolation, the 17 control 
points of the analytically known curve were defined (see Table 
1).  

 Point X [mm] Y [mm] Point X [mm] Y [mm] 

1 0 1 10 180 7 

2 20 6 11 200 9 

3 40 12 12 220 11 

4 60 6 13 240 8 

5 80 2 14 260 2 

6 100 6 15 280 13 

7 120 12 16 300 2 

8 140 6 17 320 2 

9 160 1       

Table 1. Defined control points of the curve 

Four CNC programs for A-spline, B-spline, C-spline and linear 
interpolation were generated in the control system SINUMERIK 
840D and machined using five-axis machining centre MCV 1210 
(whole carbide milling cutter FRAISA HM MG10 ⌀20mm, vc=200 
m/min, vf=400 mm/min, ap=15 mm and ae=2 mm - – according 
to the previous experimental studies) – see Figure1.  

 

Figure 1.Machined curves using spline and linear interpolations 

 

Figure 2. Comparison of spline interpolations 

For the conditions when a very limited number of the control 
points is defined, the use of the B-spline is the least desirable 
interpolation approach, because of their passing off. In this 
case even if the weight on point is set to be highest, the B-
spline is not able to keep the desired curve. The most 
appropriate solution when curve is defined by a small number 
of points is the A-spline and eventually C-spline – see Figure 2 
(measured by MarVision MM 420). Surface topography was 
similar for all types of interpolation with Sa values between 1,3 
µm to 2 to µm (measured by ALICONA IF-G4). 

In order to reproduce the same curve using a polynomial 
interpolation approach, it is necessary to define the parametric 
polynomials of the third degree as x(t) and y(t). These 
parametric polynomials were defined by the cubic Bezier curves 
with four main control points P0, P1, P2 and P3 and working on 
the approximate principle - see equation (2) [Favrolles 1998]. 
The cubic Bezier curve passes through the initial and end point 
P0 and P3. Points P1 and P2 indicates only the shape of the curve 
– see Figure 3. 

 

                           (2) 

 

Figure 3. The cubic Bezier curve [Favrolles 1998] 

The analysed curve defined by 17 points was divided into 8 
sections with 3 points per each. The control points of the Bezier 
curves of each section were defined in software Mathematica 
8.0.1. Initial and end point of each section were identical to the 
control points of the curve, curve passes directly through them 
to ensure continuity of the curvature. Remaining two points of 
the cubic Bezier curves were defined in order to guarantee that 
the curve is closely approaching the middle control point of 
each section. The Mathematica was used later to generate 
polynomials of the third degree for x(t) and y(t) - see Table 2. 
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section 1 x(t)= 73.5t - 94.4539t
2
 + 60.9539t

3
 

y(t)= 1 + 33t
2
 - 22t

3
 

secion 2 x(t)= 40 + 60t - 74.539t
2 

+ 54.539t
3
 

y(t)= 12 - 3t
2 

+ 20t
3
 

section 3 x(t)= 80 + 60t - 40.956t
2 

+ 20.956t
3
 

y(t)= 2 + 30t
2
-20t

3
 

section 4 x(t)= 120 + 160t - 360t
2
 + 240t

3
 

y(t)= 12 - 37t
2 

 + 26 t
3
 

section 5 x(t)= 160 + 59.981t - 211.905t
2
 + 191.924t

3
 

y(t)= 1 + 1.49953t - 0.19335t
2
 + 6.69382t

3
 

section 6 x(t)= 200 + 61.538t - 64.614t
2
 + 43.076t

3
 

y(t)= 9 + 6.1538t - 1.4615t
2
 - 5.6923t

3
 

section 7 x(t)= 240 + 219.512t - 340.024t
2
 + 160.512t

3
 

y(t)= 8 - 49.3902t + 113.78t
2
 - 59.3902t

3
 

section 8 x(t)= 280 + 150t - 330t
2
 + 220t

3
 

y(t)= 13 - 33t
2
 + 22t

3
 

Table 2. Third degree polynomials for curve sections 

Based on the polynomials coefficients for the axis X and axis Y, 
a program was made (see Figure 4) and machining was 
performed at the MCV 1210/Sinumerik 840D with cutting 
conditions vc=14 m/min, ap=1 mm, vf=300 mm/min, ae=3 mm, 
using all-carbide cutter FRAISA HM MG10 ⌀3mm (according to 
the previous experimental studies) – see Figure 5. 
 

 

Figure 4. POLY program in Sinumerik 840D 

 

Figure 5. Machined curve using polynomial interpolation  

For the section 1, section 2, and section 3, the approximation 
using Bezier curve was close to the desired curve. However, in 
the next section the limited number of the defined points 
started to affect the shape of the curve. In these sections, the 
loops and reciprocal tangents on the discontinuities of the 
sections started to appear. In the area of the superposition of 
each section, it was not possible to modify direction of the 
tangent in order to keep a continuity of the curvature correctly.  
However, for the simple curvature that is defined by the 
controls points spaced less than 3 mm from each other, this 
algorithm seems to be the ideal solution for the desired curve. 

2.2 Polynomial interpolation in five-axis 

Polynomial interpolation in five-axis milling was performed on 
the plane 30x30 mm. Using a linear combination of Bernstein 
base polynomials of the degree n that form the base vector 
space of the same degree [Favrolles 1998], the plane of the 
desired shape was developed – see Figure 6.  
For a standard face milling operation using ball end mill where 
the tool is positioned perpendicularly to the machined surface, 
the cutting speed in the axis of the tools goes to zero. This leads 

not to the cutting of the material but simple forming of the 
material by the middle of the tool. So, it is recommended to 
keep the defined inclination angle of the tool while milling.  
Tool inclination can be performed in two directions. First, tool 
tilting relative to the normal of the surface in the feed direction 
(βf) and tool tilting in the direction perpendicular to the feed 
(βn) [Sadilek 2006]. 

 

Figure 6. Surface generated by Bernstein polynomials 

Polynomial interpolation in continuous five-axis milling 

The continuous five axis machining involves translation axes 
and rotational axes in to the simultaneous movement.  
In order to use polynomial interpolation approach, the 
approach with the tool axis identical to the surface normal 
(ωf=0°, ωn=0°) was chosen despite its disadvantages mentioned 
previously. The third order polynomials were generated directly 
for the zero point of the tool – Figure 7. 

 

Figure 7. Toolpath polynomials 

The third order polynomials can be defined for the individual 
tool paths. The program made with Mathematica offers a post-
script for post-processor functions and basic algorithm of CNC 
programming of polynomials for the Heidenhain iTNC530 
control system also. Based on the polynomial interpolations for 
rotational axis B, C and all translation axes can be generated.  
The experimental milling using the polynomial interpolation 
approach was performed with the milling center MIKRON 
HSM600U/Heidenhain iTNC 530 and use of the ball end mill 
Sandvik R216.62-12030-AO13G 1010 ⌀12 mm (vc=263 m/min, 
vf=1680 mm/min, ap=0,2 mm and ae=0,3 mm – according to the 
previous experimental studes) – Figure 8. 
 

 

Figure 8. Machined surface using the polynomial approach 
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Polynomial interpolation with fixed angle of the tool 
inclination 

In order to optimize cutting conditions and avoid the non-
cutting phenomenon in the axis of the tool the mathematical 
algorithm based on the definition of the ball end mill, the 
number of passes and the inclination of the tool (in two 
orthogonal planes with ωf=30° and ωn=10° angles) has been 
made with the mathematical software Mathematica. Program 
allowed generate third order polynomials for the individual tool 
paths. The polynomials referred to the contact points of the 
tool and the workpiece – see Figure 7.   
Consequently, the points of the contact had to be transformed 
to the tool zero point on the tool axis. This was achieved by a 
coordinate transformation and by inverse kinematics, which 
transformed the coordinate system of the workpiece into the 
coordinate system of the machine – see Figure 9. 

 

Figure 9. Positioning of the ball end mill (in the first plane) 

However, during this transformation from the contact point to 
the zero point at the tool axis, the third-degree polynomials 
were in some cases transformed to the rational functions which 
cannot be processed by the CNC control systems. In case of the 
polynomial interpolation with fixed angle of the tool inclination 
is necessary to make a special tool correction in order to get 
the right tool positions and trajectory. 

3 CONCLUSIONS 

Nowadays, most of all modern control systems contain function 
allowing external polynomial programming (Sinumerik, 
Heidenhain, Fanuc, Mazatrol, etc.) but this application is not 
widely used in the serial production. The main reason is the 
need for an external mathematical calculations and 
programming for the tool paths. However, direct polynomial 
interpolation approach can be used when current CAD/CAM 
programming is not able to reach path specifications 
appropriately. Polynomial interpolation approach can, in some 
specific cases, substitute also the phase of reverse engineering 
where surface of the workpiece can be described 
mathematically, based on the optimized number of the control 
points. However, a very good surface quality can be achieved 
when a convenient machine set-up, optimal algorithms, 
modern tooling and cutting conditions are used.  
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