A GENERALIZED FORCE AND CHIP FLOW MODEL FOR OBLIQUE CUTTING AND VARYING UNDEFORMED CHIP CROSSSECTIONS

Abstract

Simple cutting force models are well suited for orthogonal cutting. However, industrial processes often use oblique cutting with complicated cutting edge shapes, where simple cutting force models underestimate the forces. The new cutting force model is based on an existing model for restricted chip motion, but generic cutting edge and rake face shapes and arbitrary process kinematics are accepted to calculate the chip flow direction. The model is able to predict the force changes in the beginning of a turning process, when a tool with large nose radius enters the workpiece, and the chip movement in drilling.

Recommended articles

LONG-TERM THERMAL COMPENSATION OF 5-AXIS MACHINE TOOLS DUE TO THERMAL ADAPTIVE LEARNING CONTROL

P. Blaser, J. Mayr, K. Wegener
Keywords: Thermal behavior; Compensation; Self-optimization; Machine learning

DEVELOPMENT OF A METHOD TO DETERMINE CUTTING FORCES BASED ON PLANNING AND PROCESS DATA AS CONTRIBUTION FOR THE CREATION OF DIGITAL PROCESS TWINS

A. Hänel, E. Wenkler, T. Schnellhardt, C. Corinth, A. Brosius, A. Fay, A. Nestler
Keywords: Digital process twin; Machine data collection; Cutting forces; Process data; Milling

ANALYSIS OF SURFACE POST-PROCESSING TECHNIQUES FOR IMPROVEMENT OF ADDITIVE MANUFACTURED PARTS IN AEROSPACE

M. O. Oyesola, K. Mpofu, N. Mathe, S. Hoosian, I. Tlhabadira
Keywords: Additive manufacturing; Post-processing; Aerospace

ADAPTIVE TOOLPATH FOR 3-AXIS MILLING OF THIN WALLED PARTS

N. Grossi, A. Scippa, L. Croppi, L. Morelli, G. Campatelli
Keywords: Toolpath; Milling; Thin-wall workpiece