ADAPTIVE TOOLPATH FOR 3-AXIS MILLING OF THIN WALLED PARTS

Abstract

In this paper a technique to compute the 3-axis toolpath for a thin-wall component is presented aiming at maximizing the engagement conditions, keeping the geometry in tolerance. The toolpath generation is based on the static deflection of the component, predicted by coupling a mechanistic model of the cutting forces with a FE model of the workpiece, including, at each machining step, material removal mechanism. The algorithm follows the milling cycle in the reverse order: starts from the finished part, computes the maximum allowable radial depth of cut, and, adding material accordingly, generates the toolpath until the stock is built. The proposed technique has been experimentally validated, proving its effectiveness.

Recommended articles

SURFACE INTEGRITY IN TURNING OF FE17CR2NI0.2C IRON BASED THERMALLY SPRAYED COATINGS WITH SPECIAL RESPECT TO THE INFLUENCE OF THE FEED

H. Liborius, A. Nestler, G. Paczkowski, A. Schubert, T. Grund , T. Lampke
Keywords: Surface integrity; Thermally sprayed coatings; Turning

MATERIAL REMOVAL MODE IN 3D MICRO USM

Y. Chen, Z. Yu, G. Li, S. Lei, N. Wataru
Keywords: Micromachining; Ultrasonic vibration; Material removal mode; 3D micro cavity; Surface roughness

MACHINABILITY THE AISI 316 STAINLESS STEEL AFTER PROCESSING BY VARIOUS METHODS OF 3D PRINTING

p. mASEK, T. Fornusek, P. Zeman, M. Bucko, J. Smolik, P. Heinrich
Keywords: Hybrid manufacturing; Machining; Machinability; Stainless steel

HIGH SPEED SYNCHRONOUS RELUCTANCE DRIVES FOR MOTOR SPINDLES

M. Weber, M. Weigold
Keywords: High speed machining; Synchronous reluctance drive; Motor spindle