ADAPTIVE TOOLPATH FOR 3-AXIS MILLING OF THIN WALLED PARTS

Abstract

In this paper a technique to compute the 3-axis toolpath for a thin-wall component is presented aiming at maximizing the engagement conditions, keeping the geometry in tolerance. The toolpath generation is based on the static deflection of the component, predicted by coupling a mechanistic model of the cutting forces with a FE model of the workpiece, including, at each machining step, material removal mechanism. The algorithm follows the milling cycle in the reverse order: starts from the finished part, computes the maximum allowable radial depth of cut, and, adding material accordingly, generates the toolpath until the stock is built. The proposed technique has been experimentally validated, proving its effectiveness.

Recommended articles

FINISH MILLING STUDY OF Ti-6Al-4V PRODUCED BY LASER METAL DEPOSITION (LMD)

A. Kallel, A. Duchosal, G. Altmeyer, A. Morandeau, H. Hamdi, R. Leroy, S. Méo
Keywords: Laser Metal Deposition (LMD); Milling; Ti-6Al-4V; Heat treatment; Surface integrity

VIBRATION ATTENUATION OF BORING BARS WITH NONLINEAR CONTROL FORCE

Z. Iklodi, A. Astarloa, Z. Dombovari
Keywords: Boring bar; Active damper; Nonlinear force; Linear stability

NICKEL-BASED ALLOY DRY MILLING FORCE AND TEMPERATURE BY USING MONOLITHIC CERAMIC END MILL TOOL

Z. Yuan, J. Zha, J. Liang, Y. Li, Y. Chen
Keywords: Nickel-based alloy; Monolithic ceramic end mill; High speed milling; Material removal rate

RESOURCE CONSUMPTION CLASSES OF MACHINE TOOLS

M. Putz, H. J. Koriath, A. P. Kuznetsov
Keywords: Machine tool; Energy; Resource; Efficiency; Costs