ADAPTIVE TOOLPATH FOR 3-AXIS MILLING OF THIN WALLED PARTS

Abstract

In this paper a technique to compute the 3-axis toolpath for a thin-wall component is presented aiming at maximizing the engagement conditions, keeping the geometry in tolerance. The toolpath generation is based on the static deflection of the component, predicted by coupling a mechanistic model of the cutting forces with a FE model of the workpiece, including, at each machining step, material removal mechanism. The algorithm follows the milling cycle in the reverse order: starts from the finished part, computes the maximum allowable radial depth of cut, and, adding material accordingly, generates the toolpath until the stock is built. The proposed technique has been experimentally validated, proving its effectiveness.

Recommended articles

INVESTIGATIONS ON THE INFLUENCE OF ISOTROPY IMPROVING ALLOY ADDITIVES WHEN MACHINING 38MNSIVS6

T. Bergs, T. Seelbach, D. Schraknepper
Keywords: Micro-alloyed steel; Isotropy; Machinability; Inclusions

ANALYSIS OF CONTOUR ACCURACY AND PROCESS FORCES USING A CHAMBER-BORING-SYSTEM

R. Schmidt, J. F. Gerken, M. Fuß, D. Biermann
Keywords: Deep hole drilling; Manufacturing process; Chamber boring; Contour measurement; Non-circular profiles; Experimental approaches in machining

SURFACE INTEGRITY IN TURNING OF FE17CR2NI0.2C IRON BASED THERMALLY SPRAYED COATINGS WITH SPECIAL RESPECT TO THE INFLUENCE OF THE FEED

H. Liborius, A. Nestler, G. Paczkowski, A. Schubert, T. Grund , T. Lampke
Keywords: Surface integrity; Thermally sprayed coatings; Turning

CHATTER AVOIDANCE IN MILLING BY USING ADVANCED CUTTING TOOLS WITH STRUCTURED FUNCTIONAL SURFACES

J. Baumann, E. Krebs, D. Biermann
Keywords: Cutting tools; Chatter avoidance; Surface structures