CHATTER AVOIDANCE IN MILLING BY USING ADVANCED CUTTING TOOLS WITH STRUCTURED FUNCTIONAL SURFACES

Abstract

The productivity of machining processes is often limited by the occurrence of dynamic effects. The presented approach intends to counteract tool deflections, and thus to damp and disrupt chatter vibrations by using milling tools with defined functional structures on the flank faces at the minor cutting edges. The potential of process stabilization is evaluated by analyzing the operational behavior of three variants of surface structures in experiments, in which an aluminum alloy was machined. An increase of the process stability and productivity of up to 60 % could be achieved.

Recommended articles

PULSATING HIGH-PRESSURE CUTTING FLUID SUPPLY FOR CHIP CONTROL IN FINISH TURNING OF INCONEL 718

T. Bergs, A. Splettstößer, D. Schraknepper
Keywords: Turning; High-pressure cutting fluid supply; Chip breaking; Chip control; Inconel 718; Nickel-based alloys

DESIGN AND SIMULATION-BASED ANALYSIS OF A TEST BED FOR TWO-DIMENSIONAL KINEMATICALLY COUPLED FORCE COMPENSATION

S. Ihlenfeldt, J. Müller, M. Merx, C. Peukert
Keywords: Linear Motor; Control; Compensation; Feed Drive; Redundant Axis

NICKEL-BASED ALLOY DRY MILLING FORCE AND TEMPERATURE BY USING MONOLITHIC CERAMIC END MILL TOOL

Z. Yuan, J. Zha, J. Liang, Y. Li, Y. Chen
Keywords: Nickel-based alloy; Monolithic ceramic end mill; High speed milling; Material removal rate

MACHINABILITY THE AISI 316 STAINLESS STEEL AFTER PROCESSING BY VARIOUS METHODS OF 3D PRINTING

p. mASEK, T. Fornusek, P. Zeman, M. Bucko, J. Smolik, P. Heinrich
Keywords: Hybrid manufacturing; Machining; Machinability; Stainless steel