CHATTER AVOIDANCE IN MILLING BY USING ADVANCED CUTTING TOOLS WITH STRUCTURED FUNCTIONAL SURFACES

Abstract

The productivity of machining processes is often limited by the occurrence of dynamic effects. The presented approach intends to counteract tool deflections, and thus to damp and disrupt chatter vibrations by using milling tools with defined functional structures on the flank faces at the minor cutting edges. The potential of process stabilization is evaluated by analyzing the operational behavior of three variants of surface structures in experiments, in which an aluminum alloy was machined. An increase of the process stability and productivity of up to 60 % could be achieved.

Recommended articles

FREQUENCY RESPONSE PREDICTION FOR ROBOT ASSISTED MACHINING

A. Barrios, S. Mata, A. Fernandez, J. Munoa, C. Sun, E. Ozturk
Keywords: Robot; Dynamics; Frequency response; Receptance coupling; Machining

A STUDY OF THE APPLICATION OF VOLUMETRIC COMPENSATION BY DIRECT AND INDIRECT MEASUREMENT METHODS

M. Holub, J. Knobloch, T. Marek
Keywords: Geometric accuracy; Volumetric accuracy; Direct method; Indirect method

INFLUENCE OF BOTH RAKE AND FLANK FACES METAL WORKING FLUID (MWF) STRATEGIES ON MACHINABILITY OF Ti-6Al-4V ALLOY

A. Kummamkandath, A. Duchosal, A. Morandeau, R. Serra, R. Leroy
Keywords: Cryogenic machining; Rake and flank application; CO2; Ti-6Al-4V; Machinability; Surface integrity; Chip microstructure

MOBILE MACHINES FOR THE MACHINING OF LARGE DIMENSION PARTS

O. Legoff, M. Ritou, C. Maurin, S. Bonnet, B. Furet
Keywords: Mobile machine; Robotic machining; Large dimension