DESIGN AND SIMULATION-BASED ANALYSIS OF A TEST BED FOR TWO-DIMENSIONAL KINEMATICALLY COUPLED FORCE COMPENSATION

  • 1TU Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, DE
  • 2Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, DE

Abstract

To reduce the excitation of structural oscillations machine tools’ feed dynamics are usually limited. Thus, their productivity is restricted, especially for high dynamic processes with negligible process forces. The principle of Kinematically Coupled Force Compensation (KCFC) tries to overcome this issue by combining a redundant axis configuration with the principle of force compensation. In this paper, based on a short introduction considering the overall motivation and the KCFC principle, an overview of the design process of a 2D-KCFC test bed is given. This includes the simulation-based design of the slides, the machine frame and the electric voice coil drives. Subsequently a simulative analysis, facilitating a Multibody Simulation (MBS) for the investigation of the mechatronic system operated at highest feed dynamics and controller cycle rates, is performed. This simulation illustrates the possible reduction in process time and validates the effectiveness of the test bed’s torque decoupling concept.

Recommended articles

ADAPTIVE SCHEDULING THROUGH MACHINE LEARNING-BASED PROCESS PARAMETER PREDICTION

M. Frye, D. Gyulai, J. Bergmann, R. H. Schmitt
Keywords: Artificial intelligence; Machine learning; Data analytics; Adaptive scheduling; Process parameter prediction; Process optimization; Job shop scheduling

A GENERALIZED FORCE AND CHIP FLOW MODEL FOR OBLIQUE CUTTING AND VARYING UNDEFORMED CHIP CROSSSECTIONS

L. Meier, L. Seeholzer, K. Wegener
Keywords: Cutting forces; Restricted chip motion; Turning; Drilling

INVESTIGATION OF THE DYNAMIC BEHAVIOR OF MACHINE TOOLS DURING CUTTING BY OPERATIONAL MODAL ANALYSIS

J. Berthold, M. Kolouch, J. Regel, M. Putz
Keywords: Machine tool; Dynamic; Operational modal analysis; Measurement

THE INFLUENCE OF CUTTING CONDITIONS ON SURFACE INTEGRITY IN HIGH FEED MILLING OF Ti-6Al-4V WITH SUPERCRITICAL CO2 COOLING

P. Litwa, K. K. Wika, A. Zonuzi, C. Hitchens
Keywords: Milling; Ti-6Al-4V; Supercritical carbon dioxide; Surface integrity