FEED DRIVE CONDITION MONITORING USING MODAL PARAMETERS

Abstract

Ball screws and linear guides are among the key components of machine tools. Abrasive wear causes a loss in stiffness of these components over time affecting the attainable manufacturing precision and, eventually, leads to failures and costly down-time. In order to control these effects, the condition of the crucial feed drive components needs to be monitored. This paper shows, how the feed drive condition can be monitored by looking at the modal parameters of the system. It will be shown, that preload loss cannot only be detected globally, but can be traced back to the worn component. A distinct test cycle was developed for this purpose.

Recommended articles

HIGH SPEED MACHINING OF BRASS ROD ALLOYS

G. Adinamis, F. Gorsler, A. Estelle
Keywords: Brass; Machinability; High speed machining; Turning; Drilling; Milling; Cutting speed; Tool life; Surface roughness; Chip formation; CNC; Throughput; Productivity; Profitability; Steel; Stainless steel

SENSORS AS AN ENABLER FOR SELF-OPTIMIZING GRINDING MACHINES

M. Maier, T. Gittler, L. Weiss, C. Bobst , S. Scholze , K. Wegener
Keywords: Sensor fusion; Self-optimizing machines; Cost calculation; Process boundary; Grinding burn; Gas sensor; Temperature sensor; Surface roughness

MACHINING OF THIN BLADE USING VIBRATION PREDICTION AND CONTINUOUS SPINDLE SPEED CONTROL

P. Vavruska, M. Sulitka, M. Stejskal, A. Simunek, J. Falta, P. Heinrich, M. Kopal
Keywords: Machining; Optimization; Spindle speed control; Feed-rate control; FEM analysis; Deformation; Quality

MODAL-SPACE CONTROL OF A LINEAR MOTOR-DRIVEN GANTRY SYSTEM

C. Peukert, P. Pöhlmann, M. Merx, J. Müller, S. Ihlenfeldt
Keywords: Modal control; Active vibration control; Machine tool; Cascaded control; Linear motor; Inertial actuator