FEED DRIVE CONDITION MONITORING USING MODAL PARAMETERS

Abstract

Ball screws and linear guides are among the key components of machine tools. Abrasive wear causes a loss in stiffness of these components over time affecting the attainable manufacturing precision and, eventually, leads to failures and costly down-time. In order to control these effects, the condition of the crucial feed drive components needs to be monitored. This paper shows, how the feed drive condition can be monitored by looking at the modal parameters of the system. It will be shown, that preload loss cannot only be detected globally, but can be traced back to the worn component. A distinct test cycle was developed for this purpose.

Recommended articles

INVESTIGATION OF THE COOLANT FLUID FLOW DISTRIBUTION IN THE GRINDING GAP

C. Baumgart, K. Wegener
Keywords: Grinding; Coolant supply; Coolant nozzles; Grinding fluid flows; Grinding gap; Metal working fluids

ANALYSIS OF SURFACE POST-PROCESSING TECHNIQUES FOR IMPROVEMENT OF ADDITIVE MANUFACTURED PARTS IN AEROSPACE

M. O. Oyesola, K. Mpofu, N. Mathe, S. Hoosian, I. Tlhabadira
Keywords: Additive manufacturing; Post-processing; Aerospace

MACHINING OF THIN BLADE USING VIBRATION PREDICTION AND CONTINUOUS SPINDLE SPEED CONTROL

P. Vavruska, M. Sulitka, M. Stejskal, A. Simunek, J. Falta, P. Heinrich, M. Kopal
Keywords: Machining; Optimization; Spindle speed control; Feed-rate control; FEM analysis; Deformation; Quality

LONG-TERM THERMAL COMPENSATION OF 5-AXIS MACHINE TOOLS DUE TO THERMAL ADAPTIVE LEARNING CONTROL

P. Blaser, J. Mayr, K. Wegener
Keywords: Thermal behavior; Compensation; Self-optimization; Machine learning