FREE-FORM TOOLS DESIGN AND FABRICATION FOR FLANK SUPER ABRASIVE MACHINING (FSAM) NON DEVELOPABLE SURFACES

Abstract

Manufacturing improvements are becoming a real need in industry. In order to satisfy these industrial requirements, they should be targeted in two different directions: new manufacturing processes and surface optimization through algorithms. On the one hand, Super Abrasive Machining (SAM) is presented as a new manufacturing process combining benefits from milling and grinding technologies. On the other hand, there is a tendency to manufacture non developable surfaces by flank milling and to achieve final dimensional and roughness requirements, by calculating mathematically-optimized tool trajectories. This work presents a design and manufacturing of a free form tool to be used for the manufacturing of a complex surface through Flank SAM (FSAM). Based on the tool requirements, it will cover the following stages: tool geometry design, tool core manufacturing, and electroplating for final abrasive tool generation.

Recommended articles

S-CURVE ALGORITHM OF ACCELERATION/DECELERATION WITH SMOOTHLY-LIMITED JERK IN HIGH-SPEED EQUIPMENT CONTROL TASKS

V. Kombarov, V. Sorokin, O. Fojtu, Ye. Aksonov, Ye. Kryzhyvets
Keywords: CNC; S-curve algorithm of acceleration/deceleration; Smoothly-limited jerk; High-speed equipment

HIGH SPEED SYNCHRONOUS RELUCTANCE DRIVES FOR MOTOR SPINDLES

M. Weber, M. Weigold
Keywords: High speed machining; Synchronous reluctance drive; Motor spindle

LONG-TERM THERMAL COMPENSATION OF 5-AXIS MACHINE TOOLS DUE TO THERMAL ADAPTIVE LEARNING CONTROL

P. Blaser, J. Mayr, K. Wegener
Keywords: Thermal behavior; Compensation; Self-optimization; Machine learning

INVESTIGATION ON THE PRODUCTIVITY OF MILLING TI6AL4V WITH CRYOGENIC MINIMUM QUANTITY LUBRICATION

D. Gross, M. Appis, N. Hanenkamp
Keywords: Carbon dioxide; Cryogenic; CMQL; Ti6Al4V; Milling; Spray test