HIGH SPEED MACHINING OF BRASS ROD ALLOYS

Abstract

Brass is known for excellent machinability, but its ultimate productivity potential with high speed machining requires further study. An extensive testing program was conducted in laboratory and production settings on representative brass rod alloys using modern machine tools. Machinability data collected for turning, drilling and milling offers new insights on the effects of increasing speed, feed rate and depth of cut on tool life, efficiency, surface integrity and chip formation. The results show that advancements in machine tool technology, coupled with the underutilized high speed machining capabilities of brass, offer new opportunities for manufacturers to become more productive and profitable.

Recommended articles

ANALYSIS OF CONTOUR ACCURACY AND PROCESS FORCES USING A CHAMBER-BORING-SYSTEM

R. Schmidt, J. F. Gerken, M. Fuß, D. Biermann
Keywords: Deep hole drilling; Manufacturing process; Chamber boring; Contour measurement; Non-circular profiles; Experimental approaches in machining

INVERSE MATERIAL MODEL PARAMETER IDENTIFICATION FOR METAL CUTTING SIMULATIONS BY OPTIMIZATION STRATEGIES

T. Bergs, M. Hardt, D. Schraknepper
Keywords: Johnson-Cook model; Simulation; Optimization; Inverse identification; Machining

A NOVEL METHOD FOR THE CHARACTERIZATION OF DIAMOND WIRE TOPOGRAPHY AND ABRASIVE GRAIN GEOMETRIES

U. Pala, K. Wegener
Keywords: Diamond wire; Wire sawing; Diamond wire topography; Abrasive grain characterization; Grain geometry

NICKEL-BASED ALLOY DRY MILLING FORCE AND TEMPERATURE BY USING MONOLITHIC CERAMIC END MILL TOOL

Z. Yuan, J. Zha, J. Liang, Y. Li, Y. Chen
Keywords: Nickel-based alloy; Monolithic ceramic end mill; High speed milling; Material removal rate