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Abstract 

Numerical modeling of machining processes exhibits a high potential for shortening process development 
times. When modeling the machining process, an accurate material model is essential for the success 
and reliability of the simulated results. Especially, the simulation results depend largely on the material 
model and on the material parameters. To identify the parameters for machining conditions, inverse 
methods are used, where results from simulations are matched iteratively with those obtained 
experimentally. This procedure is, however, time-consuming and a large number of iterations is needed. 
This paper presents a new methodology for the inverse identification of material parameters by an 
optimization algorithm. 
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1 INTRODUCTION 

Machining processes are one of the major manufacturing 
processes in the production industry. Therefore, they play 
a significant role in today’s industry. Typically, machining 
processes are designed empirically by trial-and-error 
approaches [Shi 2004]. This conventional machining 
process design, however, is limited in its capabilities, since 
it is just of descriptive nature and not predictive. 
Furthermore, the experimental evaluation is expensive and 
very time-consuming [Arrazola 2014]. 

Another approach for the process design of machining 
processes with the capability of reducing the time to market 
is the usage of modeling approaches [Filice 2008]. 
Modeling of manufacturing processes shows a high 
potential for shortening product and process development 
times. The approaches for metal cutting modeling can be 
divided into five types: analytical, numerical, experimental, 
artificial Intelligence (AI), and hybrid modeling [Arrazola 
2013]. An example for a numerical method, and focus of 
this study, is the finite element analysis (FEM).  

One major advantage of the FEM analysis, compared to 
experimental machining experiments, is the capability to 
predict process quantities accurately, such as stress, strain, 
strain rate, and temperature. These process quantities are 
difficult to measure during machining experiments, 
however, they play a pivotal role when enhancing the 
process comprehension [Lei 1999]. The use of FEM 
techniques to the field of engineering and specifically in the 
field of machining was first introduced by Zienkiewicz, 
respective by Klamecki in the 1970s [Zienkiewicz 1971, 
Klamecki 1973]. Ever since, modeling of machining 
processes became more and more popular in the scientific 
community. In 1995, the CIRP STC “Cutting” started the 
“Cutting Working Group” with the aim to improve the quality 

of predictability and performance of machining process 
simulations with a defined cutting edge, as well as to 
promote the use of these models in the industry [van 
Luttervelt 1998]. 

To set up numerical models of the machining process 
several input information are necessary. Thereby, an 
accurate material and friction model is essential for the 
success and for the reliability of the simulated results 
[Childs 1998]. Nevertheless, accurate modeling of the 
material behavior depends largely on the selected material 
model as well as on the chosen material parameters. In the 
state of the art, there is a large number of different material 
models that are used for metal cutting simulations. The 
material models can be classified into empirical/ 
phenomenological, semi-empirical, and physically based 
constitutive models. Empirical constitutive material models 
often describe the material flow stress as a function of 
strain 𝜖, strain rate 𝜖̇ and temperature 𝑇. One example for 

an empirical constitutive material model is the Johnson-
Cook model, which found wide application in metal cutting 
simulations [Johnson 1983]. 

Commonly, the parameters of the material models are 
determined by quasi-static or by dynamic tests, such as the 
Split-Hopkinson-Pressure-Bar (SHPB) test [Abouridouane 
2012]. Using the SHPB test, conditions with strains up to 
0.5, strain rates up to 5·103 s-1, and temperatures up to 
1,000 °C are achievable [Poulachon 2001]. However, these 
conditions are far away from those conditions encountered 
in machining, where strains up to 2 or even 6, strain rates 
up to 106 s-1, and temperatures between 500 °C and 
1,400 °C can occur [Shi 2004, Bäker 2015, Arrazola 2013]. 
This deviation results in the need of extrapolation when 
using flow stress data from SHPB tests to simulate the 
material behavior under metal cutting conditions. This might 
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lead to deviations between the predicted and the actual 
material behavior [Shatla 2001]. 

To circumvent the problem of extrapolation, several 
researchers used inverse techniques in the last 10 years, 
where machining simulations are matched with cutting 
experiments by varying the parameters of the implemented 
material model [Bäker 2015, Klocke 2013a, Klocke 2013b]. 
By matching integral simulation results (e.g. cutting force, 
chip shape or cutting temperature) with those obtained from 
(e.g. orthogonal) cutting experiments until a predefined 
objective or error-function is undercut, the expression of the 
material model itself and the parameters of the material 
model are validated [Warnecke 2002]. 

However, the inverse iterative identification processes are 
time-consuming and might need a large number of 
iterations and, therefore, high computational efforts [Bäker 
2015]. To determine the material models faster and more 
robust, different optimization strategies and algorithms 
have been used in the field of modeling manufacturing 
processes, such as in stamping [Chaparro 2008] or in sheet 
metal forming [Chaparro 2008]. In the field of machining 
modeling, there are just a few publications on using 
optimization algorithms to determine material parameters. 
Özel and Karpat used the evolutionary computational 
algorithm of Particle Swarm Optimization for optimizing the 
Johnson-Cook parameters from SHPB tests for metal 
cutting simulations [Özel 2007]. Later Shrot and Bäker used 
the Levenberg-Marquardt algorithm for an iterative re-
identification of Johnson-Cook parameters from cutting 
simulations [Shrot 2011]. Denkena et al. used the Particle 
Swarm Optimization to determine the parameters of the 
Johnson-Cook material model in combination with Oxley’s 
machining theory [Denkena 2015]. Another approach using 
the Levenberg-Marquart algorithm was presented by Hor et 
al., who used the algorithm to optimize the material 
parameters from a modified TANH-model, presented in its 
original form by Calamaz et al. [Calamaz 2008], by using 
experimental data from compression tests [Hor 2013]. 
These approaches show the capabilities and the 
improvements, especially compared to the classic inverse 
iterative procedure, to determine material parameters for 
metal cutting simulations.  

In this paper, a new methodology for the inverse 
identification of Johnson-Cook material parameters from 
FE-simulations by means of an optimization algorithm is 
presented. As optimization algorithm, the Downhill-Simplex 
algorithm (also called Nelder-Mead algorithm) is utilized. To 
assess the approach, the simulation results from an initial 
parameter set from the literature for the steel AISI 1045 
were used as target values. The goal of the optimization 
strategy is to re-identify the initial material parameters. 
Finally, the computational effort when using the proposed 
algorithm was evaluated as well.  

The paper is organized as follows: The material model, that 
is used for the optimization approach is presented in the 
following Chapter 2. Thereafter, the orthogonal cutting 
model that is implemented into the software ABAQUS is 
outlined, followed by the presentation of the used algorithm 
to optimize the material model parameters. The 
optimization approach is presented in Chapter 5 and 6. In 
the last chapter the conclusions will be given and an outline 
will be drawn. 

2 MATERIAL AND FRICTION MODEL  

The chapter is divided into two subchapters to present the 
two models used for the FE-cutting simulations, namely the 

material and friction model. Both models have a major 
influence on the simulation results. 

2.1 Material Model 

One of the most widely used material models to describe 
the constitutive workpiece material behavior in metal cutting 
simulations was developed by Johnson and Cook, see 
Equation (1) [Johnson 1983]. In this equation, the effects of 
strain 𝜖, strain rate 𝜖̇ and temperature 𝑇 on the flow stress 

𝜎 are expressed separately (uncoupled) [Voyiadjis 2005]. 

The considered effects are presented by the three terms in 
the brackets. 

𝜎 = (𝐴 + 𝐵𝜖𝑛) (1 + 𝐶 ⋅ 𝑙𝑛
�̇�

�̇�0
) (1 − (

𝑇−𝑇0

𝑇𝑚−𝑇0
)

𝑚
) (1) 

The first bracket represents the strain hardening effect of 
the strain on the flow stress and is expressed by the Ludwik 
equation. The second term represents the strain rate 
hardening effect, expressed in a logarithmic form. The last 
bracket expresses the thermal softening effect based on a 
power function [Klocke 2018]. In the Equation (1), A, B, n, 
C, and m are material constants, 𝜖0̇ the reference plastic 

strain rate with 𝜖0̇ = 1 𝑠−1 , 𝑇0  the reference temperature 
(usually room temperature) and 𝑇𝑚 the melting temperature 

[Johnson 1983]. 

Besides the Johnson-Cook material model, many more 
material models have been developed in the past. Thereby, 
some of the material models are modifications of the 
Johnson-Cook model itself, e.g. by Shatla et al. [Shatla 
2001], Bäker [Bäker 2006], Abouridouane [Abouridouane 
2015] or Ee et al. [Ee 2005]. Examples of physically-based 
models are the Zerilli-Armstrong model [Zerilli 1987, Zerilli 
2004], the Bammann-Chiesa-Johnson model [Guo 2005] or 
the Mechanical Threshold Stress Model [Follansbee 1988]. 
Since the Johnson-Cook material model is implemented 
within the simulation software ABAQUS, the optimization of 
the Johnson-Cook parameters is aimed within this paper. 
The scope of this paper is not to identify the most 
appropriate material model for simulations of metal cutting, 
but rather to present a new method for the inverse 
parameter identification. The presented technique is 
expected to be applicable to other material models as well.  

Tab. 1: Johnson-Cook material model parameters for 
AISI 1045 underlying the simulations of this study. 

The parameters used for the description of the initial 
parameter set were taken from the literature [Klocke 2013]. 
In Tab. 1, the parameters to describe the Johnson-Cook 
material model are summarized. In this study, the initial 
parameter set was varied in order to re-identify this set by 
using the Downhill-Simplex algorithm, see Chapter 5. 

2.2 Friction Model 

Besides the material model, the friction model has a major 
impact on the simulation results [Abouridouane 2015]. It 
has been widely shown, that the usage of a simple Coulomb 

Johnson-Cook material parameter AISI 1045 

Material AISI 1045 normalized 

Material model Johnson-Cook model 

𝐴 / MPa  546 

𝐵 / MPa 487 

𝑛 / - 0.25 

𝑚 / - 0.631 

𝐶 / - 0.027 

𝜖0 / s-1 0.002 

𝑇0 / °C 20 

𝑇𝑚 / °C 1500 
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friction model is not sufficient to describe the frictional 
behavior between the tool and the workpiece or between 
the tool and the chip, respectively [Puls 2014]. To overcome 
the limitations when using the Coulomb friction model, a 
large number of different friction models have been 
investigated in the scientific community, e.g. by Özel [Özel 
2006], Filice et al. [Filice 2006] or Puls et al. [Puls 2014].  

Puls et al. used in their study a high-speed deformation test, 
where an indexable insert in an orthogonal cutting 
experiment was rotated to have a highly negative rake 
angle. This ensures that the chip formation is suppressed. 
Based on their findings, a temperature dependent friction 
model was derived. In this study, this friction model has 
been utilized, since it was calibrated for the workpiece 
material AISI 1045 underlying this study, and since it takes 
the temperature effect on the friction in the interfaces of 
tool/chip and tool/workpiece into account. The friction law is 
shown in Equation (2). In this equation, the softening term 
is formulated analogously to the JC material model [Puls 
2014]. The parameters that were used for the underlying 
simulations of this study when modeling the frictional 
behavior are summarized in Tab. 2.  

𝜇 = 𝜇0 (1 − (
𝑇−𝑇0

𝑇𝑚−𝑇0
)

𝑚𝑟

)  for 𝑇 ≥ 𝑇0 (2) 

Tab. 2: Model parameters for the friction model acc. to 
[Puls 2014]. 

The material model was implemented within the simulation 
program ABAQUS in a tabular form to describe the contact 
properties between tool and workpiece material. The friction 
coefficient was implemented for a temperature step of 
10 °C until it reaches zero. 

3 ORTHOGONAL CUTTING MODEL 

Different formulations of discretization have been used in 
the literature to model the metal cutting process by means 
of FEM simulations. Among the formulations, the 
Lagrangian and Eulerian formulation can be considered as 
the classical approaches. In the Eulerian discretization, 
which found wide application in fluid-flow simulations 
[Movahhedy 2000], the continuum moves through elements 
that are fixed in space. For machining simulations, the 
Eulerian formulation can only be used for the steady state, 
which requires the knowledge of the final chip geometry 
[Arrazola 2013]. In comparison, the Lagrangian 
discretization assumes, that the nodes of the mesh are 
attached to the material and follow its deformation [Vaz 
2007].  

Besides the two classical formulations, two other 
formulations have been used for the simulation of 
machining processes: the Arbitrary Lagrangian Eulerian 
(ALE) approach and the Coupled Eulerian Lagrangian 
(CEL) approach. These approaches have been developed 
to combine the advantages and to avoid the drawbacks of 
both other methods [Movahhedy 2000]. In the ALE 
formulation, the material flows through the mesh, 
analogous to the Eulerian formulation. Additionally, the 
element nodes are able to move free within the area. In the 
CEL-formulation, which has been used for machining 

simulations in the past years [Klocke 2014, Ducobu 2016], 
the workpiece material is modeled as Eulerian so that the 
material can flow freely through the fixed mesh. The tool on 
the other side is modeled by using the Lagrangian 
formulation. Therefore, the tool can move through the Euler 
domain without influencing its mesh. The set-up of the CEL-
formulation that has been used in the simulations here is 
shown in Fig. 1. As simulation software ABAQUS/Explicit 
6.14 has been utilized. For information on the advantages 
and disadvantages of ABAQUS/Explicit the author refers to 
further literature [Outeiro 2015, Bäker 2004, Ivester 2000]. 

 

Fig. 1: Set-up of the Coupled Eulerian Lagrangian model 
of orthogonal cutting. 

As boundary conditions, which are shown in Fig. 1, an initial 
inflow of the material is used to realize the cutting speed. 
The material flows through the Euler domain and exits in 
form of chip or machined workpiece material. The 
Lagrangian tool is set as fixed. Within the Euler domain, an 
initial area is assigned with the workpiece material, whereby 
the workpiece material can flow through the whole domain.  

The calculation time of a simulation is a critical factor 
influencing the total computational effort. Especially for the 
iterative identification of material model parameters, the 
calculation time of a single simulation should be reduced as 
far as possible without influencing the simulation results. To 
ensure this, a quasi-two-dimensional orthogonal cutting 
simulation was used. Since the EC3D8RT elements used 
to mesh the Euler domain are three dimensional (3D), a 3D 
simulation was used to model the orthogonal cutting 
process. The number of elements in the z-direction was one 
Therefore, the simulation can be considered as quasi-two 
dimensional.  

For a further decrease of the computational time, the 
simulation has been optimized by using different strategies. 
One approach, which has been widely used in the literature 
[Arrazola 2007, Ducobu 2015] is the mass scaling. For 
mass scaling the material density is increased to increase 
the speed of sound [Klocke 2014]. Here, a mass scaling 
factor of 1,000 was used to increase the density 𝜌 and to 

decrease the specific heat 𝑐, see Equation (3). 

Δ𝑄 = 𝑚 ⋅ 𝑐 ⋅ Δ𝑇 (3) 

Besides the mass scaling, the time increment has a major 
influence on the calculation time. The time increment has to 
be smaller than the critical time increment, otherwise the 
solution becomes numerically unstable [Ng 2002]. The 
critical time increment can be calculated according to 
Equation (4). In the simulation underlying this work, a time 
increment of 1.6e-8 s was used. Therefore, the time 
increment was smaller than the critical time increment of 
1.629e-8 s. 

  
Euler

domain

y

 

 
vc

Tool
(Lagrange)

Initial
workpiece 
material

x

f
rβ

Friction model parameters AISI 1045 

Material AISI 1045 normalized 

𝜇0 / - 0.7 

𝑚𝑟 / - 0.35 

𝑇0 / °C 600 

𝑇𝑚 / °C 1500 
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Δ𝑡 ≅
𝐿𝑚𝑖𝑛

𝑐𝑑
≅

𝐿𝑚𝑖𝑛

√
𝐸𝑣

(1+𝜈)(1−2𝜈)+
𝐸

(1+𝜈)

𝜌
 

 (4) 

Critical in terms of the computational time, but also in terms 
of the simulation results, is the mesh size [Barge 2005]. The 
larger the minimal mesh length 𝐿𝑚𝑖𝑛 , the higher the 

computational time, see Equation (4). However, with 
decreasing mesh size and with less integration points, the 
gradients of the plastic strain become low [Ambati 2011]. 
Thus, the minimal element size around the tool tip was set 
to 0.005 mm, with an increasing trend to the outer range of 
the domain (see Fig. 1).  

Within the orthogonal cutting model, the tool was meshed 
with the element type C3D4T. The Euler domain on the 
other side was meshed, as stated before, with EC3D8RT 
elements. The details of discretization, as well as the used 
thermal and mechanical properties, are summarized in 
Tab. 3. 

Tab. 3: Model input parameters [Klocke 2014]. 

4 DOWNHILL-SIMPLEX ALGORITHM 

In this study, the Downhill-Simplex algorithm, also called 
Nelder-Mead algorithm [Nelder 1965], was used to re-
identify material parameters of the Johnson-Cook material 
model. In general, the downhill-simplex algorithm is a 
method for a multidimensional problem, that can be 
employed to minimize the error between predictions and 
measurements [Sartkulvanich 2004]. In terms of the 
optimization of material model parameters, this capability 
can be used to minimize the error between the experimental 
results from e.g. machining experiments and the output of 
machining simulations. Thereby, the material model 
parameters are iterated until a predefined error is reached. 
In comparison to other optimization algorithms, the 
Downhill-Simplex algorithm is derivate-free.  

To use the Downhill-Simplex algorithm, a simplex is 
needed. A simplex is a regular polytope, that is defined by 
n + 1 vertices in a n-dimensional space [Mulyadi 2006, 

Nelder 1965]. In case of a 3D-space, the simplex is a 
tetrahedron, generated by three points p1 to pnd+1. By 
replacing the worst vertex (pnd+1

) by its reflection around the 
centroid of the hyperplane that is formed by the remaining 
vertices, the polytope moves towards the optimum [Nelder 
1965]. The conceptual procedure for a 2D-space is shown 
in Fig. 3. 

Besides the described operator called reflection, the other 
operators in the downhill-simplex algorithm are expansion, 
internal and external contraction. In this work, the 
parameters to describe the four operators were chosen to 

be 𝜌 = 1  (reflection), 𝛾 = 1/2  (expansion), 𝜎 =  1/2 

(internal contraction) and 𝛽 = 1/2  (external contraction). 

The four operators of the downhill-simplex algorithm are 
shown in Fig. 3. 

 

Fig. 3: Conceptual operators of the Downhill-Simplex 
algorithm for a 2D-space [Vaz 2015]. 

5 OPTIMIZATION OF JC PARAMETERS 

In order to reduce the computational effort when using the 
Downhill-Simplex algorithm for the parameter optimization 
in metal cutting simulations, selected parameters were 
chosen for the optimization. In this case, the Johnson-Cook 
parameters n, C, and m where chosen to be optimized 
using the proposed algorithm.  

The optimization in this study did not consider experimental 
results, but rather the simulation results using the initial 
parameter set, called S0, from Klocke et al. [Klocke 2013]. 
The aim was to re-identify these parameters by applying the 
described algorithm. To evaluate the deviation between the 
simulated results from the initial parameter set (respective 
of experimental results) and the results from the simulations 
using the material model parameters that have to be 
optimized, an error function has been defined. The error 
function has to consider different simulated outputs. In this 
study, an error function was defined that evaluates the 
deviation of the cutting force Fc, chip thickness h’, and 
cutting temperature T. The error function 𝑟  is shown in 

Equation 5. Thereby, the influence of the validation sizes 
can be weighted by the weighting factor 𝜔. The weighting 

factors were set to 𝜔𝐹𝑐
= 0.5, 𝜔𝑇 = 0.3, and 𝜔ℎ = 0.2.  

𝑟 = 𝜔𝐹𝑐
⋅ |

𝐹𝑐,𝑆0−𝐹𝑐,𝑆𝑖

𝐹𝑐,𝑆0

| + 𝜔𝑇 ⋅ |
𝑇𝑆0−𝑇𝑆𝑖

𝑇𝑆0

| + 𝜔ℎ ⋅ |
ℎ𝑆0

′ −ℎ𝑆𝑖
′

ℎ𝑆0
′ | (5) 

The algorithm was implemented into a MATLAB code. The 
simulation results were extracted from ABAQUS/Explicit 
and entered into MATLAB. Based on the algorithm and the 
previous simulation results, a new parameter set was 
calculated. Tab. 4 shows the specifications of the computer 
that has been used for the cutting simulations. Based on the 
approaches presented in Chapter 3, the computational time 

  

    
   

  
   

    

   

     

p1 - pnd+1: Initial simplex
p0: Centroid

c: Contraction
e: Expansion
r: Reflection

int: Internal
ext: External

Software ABAQUS/Explicit 6.14 

Model type: Dynamic explicit CEL 
model with full thermal-
mechanical coupling 

Workpiece: thermal and mechanical properties 

Young’s modulus E / GPa 

[Spittel 2009] f(T) Thermal conduct. 𝜆 / W/mK 

Heat capacity 𝑐 / J/kgK 

Tool: thermal and mechanical properties 

Material model Rigid 

Thermal conduct. 𝜆 / W/mK 
[Beiss 2002,  
Brookes 1992] 

Heat capacity c / J/kgK 

Density 𝜌 / kg/m³ 

Mesh properties: Euler domain 

Element type EC3D8RT 

Min. element size / mm 0.005 

Max. element size / mm 0.1 

Mesh properties: Tool (Lagrangian) 

Element type C3D4T 

Min. element size / mm 0.005 

Max. element size / mm 0.05 
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of a single cutting simulation with a cutting time of 𝑡𝑐 =
0.02 𝑠 was reduced from approximately 6 h to an average 

computational time of 1:41 h.  

Tab. 4: Specification of the computer for the cutting 
simulations. 

6 OPTIMIZATON OF MATERIAL PARAMETERS 
BY MEANS OF THE DOWNHILL-SIMPLEX 
ALGORITHM 

In this study, the Down-Hill-Simplex algorithm was used to 
optimize the three Johnson-Cook parameters m, n, and C. 
Since the Downhill-Simplex algorithm requires n+1 vertices, 
an 4D-simplex has been defined. To evaluate the Downhill-
Simplex algorithm for the material parameter optimization, 
two different approaches were conducted: In the first 
approach, the initial simplex was defined by parameters 
that were relatively close to the target parameter set S0. 
Additionally, the value ranges of the three parameters to be 
re-identified were set in a small range to mT1 ∈ [0.25, 0.75], 

nT1 ∈ [0.1, 0.5], and CT1 ∈ [0.01, 0.2]. In contrast, for the 
second approach, the initial simplex was defined by 
parameter sets that deviated more from the target 
parameter set S0 as it was the case for the first approach. 
The value ranges were larger than in the first approach, too: 
mT2 ∈ [0.1, 1], nT2 ∈ [0.1, 1], and CT2 ∈ [0.01, 0.5]. For both 

approaches, the target value of Equation (4) was set to 
r ≤ 1 %.  

When using the Downhill-Simplex algorithm the operators 
reflection and expansion could calculate a parameter, 
which’s value is not within the predefined value range. In 
this case, the value was manually set to the interval 
boundary that was overstepped.  

Approach 1: 

For the re-identification of the target parameter set 𝑆0 using 

the first approach, the error value decreased rapidly with 
increasing number of iterations. The development of the 
error value over the number of iterations is shown in Fig. 4 
by the dark blue dots. Individual outlier of the error values, 
as it is the case for iteration 6 and 9, can be attributed to 
the algorithm’s operator reflection and expansion.  

For the first approach, the algorithm was successfully 
completed after 27 iterations, since the error value undercut 
the predefined value with 𝑟1 = 0.7 %. In comparison to the 

results of the target parameter set, the determined 
parameter set deviated by 0.95 % for the cutting force, -
0.54 % for the chip thickness, and 0.39 % in terms of the 
temperature. When comparing the target parameter set 
S0 = {0.631, 0.25, 0.027} with the determined parameter set 
from the first approach S1,27 = {0.359, 0.3782, 0.0618} the 
deviations are obvious. This shows, that there is no 
uniqueness of Johnson-Cook parameters when evaluating 
the cutting force, chip thickness and cutting temperature for 
just one cutting condition. 

The deviations of the parameter sets are attributed firstly to 
the way the algorithm works. If the simplex underlying the 
algorithm approaches a local minimum, it may happen that 
the simplex no longer breaks out of the local minimum and 
thus no longer approaches the global minimum. This 
problem could be avoided, or at least be improved, by 

selecting other parameters describing the operators of the 
Downhill-Simplex algorithm. Secondly, the remaining 
deviations can be attributed to numerical deviations and 
uncertainties when measuring the chip thickness. 

Approach 2: 

For the second approach, the criteria to undercut the error 
value of r = 1 % was not reached within 30 iterations. The 
smallest deviation between the results from the initial 
parameter set and the set calculated by the algorithm was 
r = 2.73 %. Nevertheless, with the algorithm it was possible 
to reduce the deviation from the initial parameter sets, 
defining the initial simplex, significantly within an acceptable 
number of iterations. The error value is expected to 
decrease further for additional iterations. 

During the iteration of the second approach, the algorithm 
calculated a parameter set after 12 iterations close to the 
target set. For small deviations of the material parameters, 
however, there were large deviations for the set 
S2,12 = {0.625, 0.35, 0.02} with regard to the validation 
variables. Thus, the algorithm neglected the calculated 
parameter set since the other parameter sets of the simplex 
resulted in a smaller deviation. The challenge of using the 
Downhill-Simplex algorithm for material parameter 
identification is obviously: the identification of the global 
minimum cannot be guaranteed.  

 

Fig. 4: Deviation of the error value for the two presented 
approaches over the number of iterations. 

Since the computational time is not just a crucial factor for 
simulations, but also for iterative methods like the inverse 
determination of material model parameters, the 
computational time has to be evaluated. In this study the 
total computational effort for the first approach totals up to 
45 h. Since the evaluation of the simulation results is not 
yet fully automatized, additional time was needed for the 
analysis of the simulation results and for the data transfer 
between MATLAB and ABAQUS. 

7 SUMMARY AND OUTLOOK 

The algorithm-based procedure to determine material 
parameters from metal cutting simulations showed to be a 
capable way to improve the procedure for the inverse 
parameter identification. Compared to the conventional 
iterative procedure, the use of the Downhill-Simplex 
algorithm can reduce the computational time and enhance 
the reliability of the determination of the model parameters. 
However, the computational effort to improve the model 
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parameters until the predefined criteria was reached is still 
high. Due to the computational effort, the optimization 
process for the second approach was terminated after 
reaching a number of 30 iterations. It is expected, that the 
choice of the initial parameter sets, as well as the range of 
values of the parameters, has a major influence on the 
results, and therefore on the computational effort. This 
influence as well as the influence of the parameters of the 
Downhill-Simplex algorithm will be investigated in the 
future. 

The results of the first approach using the Downhill-Simplex 
algorithm showed that there is no uniqueness of parameter 
sets when just one cutting condition is considered. The 
uniqueness of model parameters will be further investigated 
in the future by taking multiple cutting conditions and 
additional validation results (e.g. passive force) into 
account. 
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