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Abstract 

This paper presents a prediction and compensation approach for thermal errors of 5-axis machine tools, 
based on supervised online machine learning. Process-intermittent probing is used to identify and update 
a thermal autoregressive with exogenous input (ARX) model. The approach is capable of predicting and 
compensating thermal displacements of the tool center point based on changes in the environmental 
temperature, load-dependent changes and boundary condition changes and states, like dry or wet 
machining. The self-optimized machine tool shows very stable long-term behavior under drastically 
varying machining and boundary conditions. The implementation is validated on a set of thermal test 
pieces. The test pieces show that the major share of thermal workpiece errors are reduced by the thermal 
adaptive learning control. 
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1 INTRODUCTION 

The accuracy of 5-axis machine tools is a key factor to 
modern manufacturing of multi-axes machined workpieces. 
According to Bryan [Bryan 1990] and Mayr et al. [Mayr 
2012] thermally induced deviations account for the largest 
single source of errors in machine tools and measurement 
machines. The variation of the structural temperature leads 
to position and orientation errors of the tool center point 
(TCP) relative to the workpiece. Reducing the thermally 
induced errors in the whole working space without 
increasing the energetic demand is a topic of great 
industrial relevance. The increasing number of publications 
related to thermal issues in machine tools also shows the 
growing academic interest. [Hernandez-Becerro 2018]. 

Thermal errors can have particularly significant effects on 
the accuracy of machine tools. Causes are thermal 
deformations of the machine elements caused by heat 
sources that exist within the structure, for example: ball 
screws, bearings, axis drive motors, friction on the 
guideway surfaces, and the flows of coolant, and external 
influences as ambient temperature changes. 

Since the thermal behavior of machine tools is affected by 
a variety of factors, reducing thermal errors is a complex 
process. The avoidance of the occurrence of thermal errors 
solely by design measures of the machine structure within 
an acceptable economical effort is not possible. 

Compensation is a process where the thermal errors 
present at a particular time are corrected by adjusting the 
position of a machine’s axes by an amount equal to the 
errors at that position. Researchers have employed various 
techniques such as a finite-element method for instance by 

[Mayr 2015a, Mian 2013] and finite-difference method by 
for example [Bossmanns 1999, Mayr 2009] in modelling the 
thermal characteristics. However, building a physical model 
can be a great challenge due to problems of establishing 
the boundary conditions and accurately obtaining the 
characteristics of heat transfer. Therefore, testing of the 
machine tool is still required to calibrate the model for 
successful application of the technique. 

In contrast, other techniques use empirical modelling, 
where the model is based on experimental measurements 
of the machine tool, rather than calibrating an existing 
model. Over the past several decades, researchers have 
investigated different kinds of such strategies to establish 
thermal error models, as summarized in [Ramesh 2000]. 
The goal is to find the optimized thermal error model with 
high accuracy and robustness as the model determines the 
correctness and effectiveness of the thermal error 
compensation subsequently.  

Ideally, the residual deviations between the predicted errors 
and the actual machine tool errors will approach zero. 
However, the predicted system behavior is always different 
from the physical one. Additionally, the actual machining 
conditions may be different from the machining conditions 
used to derive the empirical model, which leads to model 
uncertainties. Mou and Liu [Mou 1995] stated that this can 
lead to prediction errors especially for small batch 
productions, where the sequence of manufacturing 
processes changes frequently as then also does the 
direction and rate of change of thermal effects. 

As stated by [Venugopal 1986] the deformation of a body at 
a particular time depends only on the temperature of that 
body at that particular instant in time. Models based on this 
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assumption aim at building a correlation model between the 
current temperature measurements and the thermal 
deformations of the machine. The researchers then tried to 
establish a thermal prediction model based on the 
correlation of several temperature inputs and the thermal 
TCP deviations. In some publications, approaches can be 
found, where also multiple variables, such as the spindle 
speed, motor current, historical information etc. are used as 
inputs to model to the thermal errors, see [Brecher 2009, 
Gebhardt 2013, Mayr 2015b, Yang 2005] just to name a 
few. 

According to Yang and Ni [Yang 2003] models that only 
consider the current state of the machine are considered a 
static approach and are widely used for machine tool 
thermal error modeling in industry. They also state that 
static models suffer from poor robustness and prediction 
accuracy, whereas dynamic models are superior in terms 
of robustness and model accuracy. 

Autoregressive models are a special kind of dynamic 
regression models which are popular for time series data 
modeling [Ljung 1999]. As the thermal error varies 
continuously with time, researchers applied the 
autoregressive method for the thermal error modeling and 
compensation. For example, [Li 1997] found out that the 
thermal errors of a spindle at a certain instance depends on 
the thermal errors at the last instance and the spindle speed 
at the current instance, under the assumption of no load or 
finishing conditions. 

Yang [Yang 2002] reviewed several thermal error 
compensation approaches and located major barriers, that 
prevent the practical implementation in real industrial 
production. He states that the accuracy and robustness of 
thermal models is insufficient and that the thermal errors 
have to be measured in an efficient manner during 
production. He especially points out, that due to statistical 
uncertainties, assumptions in the model and the constantly 
changing boundary conditions, the error models derived 
from pre-process calibration are not necessarily accurate 
enough in the long term. They need to be verified and 
updated iteratively as the machine tool is continually used. 

In [Blaser 2017] a new approach for an adaptive learning 
control (ALC) for thermal error compensation of rotary axes 
of 5-axis machine tools has been presented. The schematic 
concept of the ALC is illustrated in Fig. 1. During a 
calibration phase, the thermal errors and the current 
boundary and machining conditions are measured by 
various sensors to obtain the first set of parameters for the 
thermal prediction model. The thermal errors are measured 
by process-intermittent probing with a touch trigger probe. 
After the phenomenological model is obtained and the 
thermal error compensation starts, the errors are measured 
with a reduced frequency to increase the machine 
productivity. The compensated thermally induced errors are 
compared to a defined action control limit. If the deviations 
exceed this threshold, a new set of model parameters is 
obtained with the data gathered since a specific point in 
time, so that the parameters of the error model can be 
adapted to the present situation. 

 

Fig. 1: Illustration of the concept of ALC for thermal error 
compensation, adapted from [Blaser 2017]. 

2 ADAPTIVE LEARNING CONTROL (ALC) FOR 
THERMAL ERROR COMPENSATION 

The functionality of the ALC procedure is explained in 
[Blaser 2017, Blaser 2018, Mayr 2018]. However, it is briefly 
reviewed in this section, since it provides the basis for the 
research presented in this paper. 

The objective of the adaptive self-learning thermal 
compensation is to reduce the thermally induced TCP-
deviations and to improve the long-term accuracy of the 
machine tool in both material removal and on-machine 
inspections with as little as possible production 
interruptions. The procedure is able to adapt its model 
parameters to changes in the process and boundary 
conditions. This methodology is also able to adjust the on-
machine measurement time intervals according to the 
predefined action control limits to ensure high productivity 
at a set accuracy range of the phenomenological model, as 
seen in Fig. 1. 

 

 

Fig. 2: Schematic diagram of ALC. The dashed line 
represents the trigger for on-machine measurements. The 

phenomenological model adaptively adjusts the 
measurement intervals [Blaser 2018]. 

Fig. 2 shows a schematic diagram of the ALC methodology. 
A measurement procedure is used which is capable of 
identifying the thermal position and orientation errors of a 
rotary axis with a touch trigger probe and a precision 
artefact mounted on the machine table. The axis error 
model used is based on the rigid body assumption and the 
use of homogeneous transformation matrices (HTM) to 
obtain the thermal displacements of the TCP relative to the 
workpiece position. The input of the HTM model are the 
predicted errors and the axis position of the machine tool 
and the output is an axes offset that shifts the axis origin in 
the opposite direction of the occurring thermal error. The 
phenomenological model predicts the thermal behavior by 
tracking multiple machine states as well as temperature 
sensor values on and around the machine structure. The 
extension of using machine states as input for the model 
was introduced by Blaser et al. [Blaser 2018] to include 
cutting fluid conditions. The outputs of the 
phenomenological model, the predicted errors, are 
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compared with the on-machine measurements obtained by 
the touch probe at discrete points in time. This comparison 
is used to periodically update the parameters of the thermal 
error model. To adapt to changing working conditions the 
approach is capable of modifying the NC-Code, with the 
use of a numerical control interface, to adjust the time 
intervals between on-machine measurements. This allows 
to dynamically adapt the amount of measurements to 
tradeoff between accuracy and productivity. The on-
machine measurement procedure only needs a few 
measurement points and allows a fast tracking of the 
thermal TCP-deviations. The repeatability and the 
measurement uncertainty of this on-machine measurement 
cycle is presented by Blaser et al. in [Blaser 2017, Blaser 
2014]. 

To the fact, that the measurement intervals of the on-
machine inspection can be triggered arbitrarily, the sample 
rate of the actual measured thermal errors is changing 
constantly. Mayr et al. [Mayr 2018] presented an adaptive 
self-learning algorithm for thermal error compensation for 
arbitrary sample rates. It is shown that with the extension of 
a weighting matrix for the least squares (LSQ) estimation of 
the ARX system parameters, the thermal model can handle 
any sampling rate coming from the arbitrary TCP 
measurements. The self-learning algorithm determines the 
optimal model order of the ARX model and monitors the 
compensated thermal location errors. If the errors exceed a 
set action control limit, a new set of parameters is 
automatically estimated. 

The ALC approach strongly depends on the selection of 
optimal inputs. Only thermal influences captured by those 
inputs can be modeled and compensated. Furthermore only 
repeatable effects can be accurately mapped to the 
occurring thermal TCP deviations. 

3 PARAMETER STUDY OF ALC 

The quality of the ALC is highly dependent on a handful of 
parameters. In this section an analytical investigation of 
those parameters is performed. Tab. 1 shows a list of the 
seven most influential parameters for the thermal 
compensation with ALC. Over the duration of an experiment 
the approach can be divided in three phases, the calibration 
phase (CP), the compensation phase (Post CP) and the 
No-Good phase (NG). The CP consists of the first few hours 
until a first set of model parameters is computed and the 
compensation phase (Post CP) starts. The NG phase is 
triggered, when an on-machine measurement is performed 
and the residual errors exceed the action control limit. Then 
the measurement frequency is increased and a model 
parameter update is performed after a certain amount of 
measurements. 

Tab. 1: Influential parameters for the thermal 
compensation with ALC and the corresponding range for 

the parameter study. 

Parameter Values 

Calibration Phase (CP) 6.5/12/16/24/36/48/60 [h] 

Measurement Interval (CP) 5 min 

Measurement Interval (Post CP) 1 - 12 / 24 / Inf [h] 

Measurement Interval (NG) 5/10/15/20/25/30/ Inf [min] 

Action Control Limit 5 µm resp. 15 µm/m 

Nr. of measurements in NG 6/12/18/24/Inf [meas.] 

Parameter Update Interval 8 – 96 / 192 [h] 

 

For the parameter study, five out of these seven parameters 
are closer investigated, the ranges of the examined values 
are listed in Tab. 1. All possible combinations are studied, 
which results in a total of 2’191 virtual experiments, that 
need to be performed.  

To test the dependability of the compensation quality on 
different thermal heat inputs, four experiments are 
performed on a real 5-axis machine tool. During the 
experiment three temperatures and seven position and 
location errors of the rotary axis are recorded. The different 
load cases (A-D) for the measurements are depicted in Fig. 
3. To induce an alternating thermal load into the machine 
tool an arbitrary speed profile of the C-axis is performed to 
simulate a fast changing small batch production. In 
measurement D in addition to the arbitrary speed profile of 
the C-axis, the cutting fluid supply through flexure tubes 
aiming at the working table is switched on and off during 
different lengths of time intervals.  

The machine tool under investigation operates in normal 
workshop conditions without any environmental 
temperature control. The resulting temperature changes of 
the environment (ENV), the workspace respectively the 
cutting fluid (CF) and the C-axis coolant due to the load 
cases specified in Fig. 3 are shown in Fig. 4. In load case 
D, instead of measuring the workspace temperature the CF 
temperature is measured. As one can see, the 
environmental temperature is fluctuating in daily cycles and 
is heavily influenced by the hall door right next to the 
machine. As shown in [Blaser 2017, Blaser 2018, Mayr 
2018], the inputs as seen in Fig. 4 can be used for the ALC 
and yield accurate compensation results for the presented 
load cases. 

Applying all the different combinations of parameters, see 
Tab. 1, on these four load cases a total of 8’764 simulation 
runs results. To handle the big amount of simulations and 
data a software environment is implemented that allows a 
parallelized computing and therefore a faster evaluation. 

 

 

Fig. 3: Load cases with varying rotational speed of the C-
axis and changes of cutting fluid states. The cyan areas 
depict the time intervals, where the cutting fluid supply is 

switched on. 
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Fig. 4: Temperature changes of the environment (ENV), 
the workspace respectively the cutting fluid (CF) and the 
C-axis coolant due to the corresponding load cases. The 
cyan areas depict the time intervals, where the CF supply 

is switched on. 

3.1 Quality indicators 

To evaluate the goodness of fit of the thermal errors, four 
different indicators are used. Each variable describes the 
compensation quality with a different focus. In the following 
equations, the subsequent nomenclature is used. The 
measured deviation is abbreviated with 𝑦𝑡 and the fitted 

deviations 𝑦�̂�, 𝑁 depicts the number of total samples, 𝐶𝑃 is 

the number of measurements until the start of the 
compensation. 

The Peak value PV measures the relation between the 
biggest peak of the compensated to the uncompensated 
time series, Eq. (1). It evaluates the biggest outliers, not 
considered the frequency of occurrence. The smaller the 
PV of the residual errors, the better the compensation. 

𝑃𝑉 =
max(|𝑦𝑡−𝑦�̂�|)

max(|𝑦𝑡|)
∗ 100, ∀𝑡 ∈ [𝐶𝑃, 𝑁] (1) 

The root mean square error (RMSE) is the square root of 
the average of squared errors, see Eq. (2) and measures 
the difference between samples of the measured and the 
predicted deviations. The RMSE is always non-negative 
and not limited, a value of 0 indicates a perfect fit to the 
data. In general, a lower RMSE is better than a higher one. 
The effect of each error on the RMSE is proportional to the 
size of the squared error; thus, larger errors have a 
disproportionately large effect on RMSE. Consequently, 
RMSE strongly penalizes higher differences in the fit from 
the original data. 

𝑅𝑀𝑆𝐸 =√
∑ (𝑦�̂�−𝑦𝑡)

2𝑁
𝑡=𝐶𝑃

𝑁−𝐶𝑃
 (2) 

A percentile is a measure indicating the value below which 
a given percentage of observations in a group of 
observations falls. For example, the 20th percentile (P20) is 
the value below which 20% of the observations may be 
found. In this work, the 99th percentile (P99) is used to 
describe the residuals according to Eq. (3). To calculate the 
percentile 𝑃𝑟 the deviations need to be sorted from lowest 

to highest. In Eq. (3) 𝑣 corresponds to the absolute 

residuals |𝑦�̂� − 𝑦𝑡| and ⌊𝑥⌋ stands for the floor function, 

whereas (𝑥%1) uses the modulus to represent the 

remainder after division by 1. Eq. (4) shows the derivation 
of the sample index for the Pth percentile. The advantage of 
the percentile is the retaining of the physical basis, so one 
can directly evaluate the remaining deviation of the 
residuals. 

𝑃𝑟(𝑣) = 𝑣⌊𝑥⌋ + (𝑥%1)(𝑣⌊𝑥⌋+1 − 𝑣⌊𝑥⌋), ∀𝑥 ∈ [𝐶𝑃, 𝑁] (3) 

𝑥(𝑃) = {

𝑁 ∙ 𝑃 +
1

2
, ∀𝑝 ∈ [𝑝1, 𝑝𝑁−𝐶𝑃]

1, ∀𝑝 ∈ [0, 𝑝1]

𝑁, ∀𝑝 ∈ [𝑝𝑁−𝐶𝑃, 1]

∀𝑃 ∈ [0,1] (4) 

with: 

𝑝𝑖 = 
1

𝑁−𝐶𝑃
(𝑖 −

1

2
) , 𝑖 ∈ [1, 𝑁 − 𝐶𝑃] (5) 

The symmetric mean absolute percentage error (SMAPE) 
is an accuracy measure based on percentage errors. The 
absolute difference between 𝑦𝑡 and 𝑦�̂� is divided by the sum 

of absolute values of the actual value 𝑦𝑡 and the predicted 

value 𝑦�̂�. The value of this calculation is summed for every 

fitted point t and divided again by the number of fitted values 
𝑁 − 𝐶𝑃, see Eq. (6). SMAPE has both a lower bound and 

an upper bound, so it provides a result between 0% and 
100%. A limitation of SMAPE is that if the actual value or 
forecast value is 0, the value will hit the upper limit, even 
though the difference between the data and the fit could 
have been small. 

𝑆𝑀𝐴𝑃𝐸 = 
100

𝑁−𝐶𝑃
∑

|𝑦�̂�−𝑦𝑡|

|𝑦�̂�|+|𝑦𝑡|
𝑁
𝑡=𝐶𝑃  (6) 

 

3.2 Results of parameter study 

The axis under investigation is the rotary axis C of a 5-axis 
machine tool, this results in seven time-varying thermal 
errors, EX0C, EY0C, EZ0T, ER0T, EA0C, EB0C and EC0C. For every 
thermal error the quality indicator can be evaluated. In 
combination with all the varied parameters, this results in 
too many degrees of freedom for visual inspection in a 
single plot. Nevertheless, in this section, a sequential 
analysis of the different influences is shown and an optimal 
set of parameters found. 

To reduce the amount of free parameters an additional 
quality indicator is introduced, the productivity 𝑃𝑑. 

𝑃𝑑 = (1 −
𝑀∗𝑇𝑀

𝑇𝑡𝑜𝑡𝑎𝑙
) ∗ 100 (7) 

In Eq. (7) 𝑇𝑀 stands for the measurement time (95 seconds) 

of a single on-machine measurement and 𝑇𝑡𝑜𝑡𝑎𝑙 for the total 

duration of the experiment. 𝑀 corresponds to the total 

amounts of measurements performed. All the parameters 
listed in Tab. 1. are directly influencing the amount of 
measurements 𝑀. The Pd shown here is no real measure 

of machine productivity, since a 100% availability is 
assumed. In reality the on-machine measurements can also 
be performed during non-productive times, as for example 
shift changes, operator breaks, between setups, etc. 

To analyze the influence of the length of the calibration 
phase on the SMAPE a boxplot is shown in Fig. 5. The 

figure shows the average SMAPE of all seven time-varying 
thermal errors. The boxplot consists of the median, the 25th 
respectively 75th quantile as well as outliers above and 
below the quantiles. It can be seen that the CP has an 
influence on the SMAPE and especially on the outliers. 
Nevertheless, the impact on the median value is not so 
significant. It is also visible, that the SMAPE values differ 
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from load case to load case, so that not the same quality of 
fit can be expected for different thermal load cases of the 
machine tool. Especially the load case of changing cutting 
fluid intervals shows, that this drastic change of boundary 
conditions is harder to compensate for. It can be concluded, 
that the CP itself is not the decisive factor for the quality of 
the fit. 

 

Fig. 5: Boxplot of averaged SMAPE of the thermal 
deviations for all load cases versus calibration phase (CP). 

Fig. 6 shows that with increasing Pd the variation of the P99 
is growing exponentially. A higher Pd corresponds in fewer 
measurements over time and thereby fewer information for 
the ALC. It is also visible, that there is a remarkable 
difference in the four experiments and that with the right 
combination of parameters low residual error and a high Pd 
can be achieved. As a comparison, if every 5 minutes a 
measurement is performed the Pd would decrease to 77%. 
In the area of 96% - 99%, the variance of the P99 permits 
a statistical significant conclusion. Therefore, an adaptive 
measurement interval selection is needed, that increases 
the Pd if features are machined with smaller accuracy 
requirements and the frequency of measurements is 
increased, if high precision features are machined. This 
measure can drastically increase the overall Pd, especially 
in high volume productions. 

 

Fig. 6: The 99th percentile of the mean of the linear 
thermal deformations for the different load cases (A-D) 

versus the productivity Pd. 

The further investigation of the free parameters shows that 
the influence of the No Good (NG) phase is of minor 
importance. Whereas the frequency of on-machine 
measurement after the CP seem to affect the quality in a 
dominant way. Fig. 7 shows the influence of the on-machine 
measurement frequency after the CP on the RMSE. It can 
be seen that with more frequent measurements, the 
variability of the RMSE is reduced. Especially if after the CP 
no additional measurements are performed, labeled as “Inf” 
in Fig. 7, the compensation quality decreases distinctively 
and depends mainly on the length of the CP. 

 

Fig. 7: RMSE of the mean of the thermal deformations of 
the different load cases (A-D) versus the measurement 

interval length. 

3.3 Optimal parameter estimation 

The parameter study showed that especially the quality 
indicator P99 is very useful since it still contains a physical 
relation and one can directly relate the corresponding 
impact on a machined workpiece. Additionally, the 
reduction of the free parameters to the indicator Pd can 
simplify the problem and provides a closer industrial 
indicator for the trade-off. To estimate an optimal set of 
parameters for future compensations the following criteria 
is therefore introduced: 

𝑃99𝑙𝑖𝑛 < 5 µ𝑚𝐴𝑁𝐷max(𝑃𝑑) (8) 

In other words, Eq. (8) states, that the optimal set of 
parameters results in a fit, where 99% of the compensated 
linear errors are below 5 µm and of those parameters the 
one with the highest Pd is chosen. 

The optimal sets of parameters evaluated according to 
Eq. (8) are listed in Tab. 2. For all load cases a different set 
of parameters can be found, that result in a Pd of more than 
95.8 %. It is notable; that in three cases the minimal 
investigated CP of 6.5 hours is sufficient, only in the case 
of the alternating cutting fluid supply a longer calibration 
phase seems preferable. 

Tab. 2: Set of optimal parameters for the load cases A-D, 
from top to bottom. 

CP 

[h] 

Interval 

[h] 

NG Meas.  

[-] 

NG Interval 

[min] 

P99 

[µm] 

Pd 

[%] 

6.5 3 6 25 4.77 97.25 

6.5 4 12 30 4.98 96.99 

6.5 2 12 10 4.91 95.87 

16 6 6 20 4.98 96.70 

To find an optimal set of parameters for all four load cases, 
the sets listed in Tab. 2 are tested for the remaining cases. 
The optimal set was chosen according to the smallest P99. 
The best set of parameters for all load cases is found to be 
the set of load case C. So the optimal compensation starts 
after a calibration phase of 6.5 hours. Afterwards the 
measurement interval is increased from 5 minutes to 2 
hours. If the set threshold is exceeded a measurement will 
be performed every 10 minutes for the next 2 hours, 
followed by a model update. 
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Tab. 3: Average quality indicators of all the thermal 
deviations for the optimally chosen parameter set 

evaluated for load case C. 

Load 

Case 

SMAPE 

[%] 

RMSE 

[µm] 

PV  

[%] 

P99 

[µm] 

Pd 

 [%] 

A 18.37 1.57 54.79 4.46 96.42 

B 18.41 1.90 63.08 4.62 96.17 

C 23.88 1.85 70.58 4.91 95.87 

D 34.95 2.42 69.09 5.29 96.29 

The corresponding quality indicator for the load cases A-D 
are listed in Tab. 3. It can be seen, that the P99 exceeds 
the defined 5 µm only for the load case D. The drawback is, 
that the quality indicator PV shows, that the fit suffers from 
few outliers and can therefore reduce the peaks only by 
30% - 45%. 

To verify the chosen set of parameters a simulation of the 
thermal error EY0C for the load case A is performed. The 
result is shown in Fig. 8. For comparison the thermal 
deviations with and without compensation is depicted. As 
expected the action control limit of 5 µm is rarely surpassed 
and the compensation is very robust over the whole 
duration of the experiment. It can also be seen, that the 
compensation quality is increasing over the duration of the 
experiment and that the magnitude and frequency of the 
appearance of peaks is drastically reduced. 

 

Fig. 8: Simulation of EY0C of load case A with optimal set of 
parameters. CP: 6.5 h, Interval: 2 h, NG-Meas: 12,  

NG-Interval: 10 min. 

To show another example and to elaborate more on the 
effect of increased compensation quality over time the 
thermal error EY0C for load case C is shown in Fig. 9. It can 
be seen also in this load case the prediction quality of the 
thermal error is clearly increasing over time. 

 

Fig. 9: Simulation of EY0C of load case C with optimal set 
of parameters. CP: 6.5 h, Interval: 2 h, NG-Meas: 12,  

NG-Interval: 10 min. 

4 THERMAL TEST PIECE 

The thermal test piece, shown in Fig. 10 and described in 
detail by Wiessner et al. [Wiessner 2018a], can determine 
thermal errors of a machine tool in X-, Y-, Z- and either A- 
or B-direction. Therefore it has nine functional surfaces 
orthogonal to Z to determine the deviations in Z-direction 
and the A respectively B rotational errors. For the X- and Y-
deviations as well as the thermal material expansion error 
of the test piece itself, 36 facets are milled on the outer 
cylindrical face with a nominal distance of 97.5 mm to the 
center. Two parallel and opposed facets are needed to 
measure the errors in the different directions. This enables 
the evaluation of nine deviations in two axes directions. One 
of the nine deviations in each direction is used as reference 
which leads to eight available points in time which is in 
conformity to a four hours warm-up and cool-down cycle, in 
accordance to ISO 230-3 [ISO 230-3:2007]. The test piece 
is pre-milled to keep the cutting forces as low as possible. 
During the test cycle the functional facets and surfaces are 
milled by a sequential movement of one axis at a time to 
avoid interpolation errors. To mill the facets the test piece 
is positioned by a movement of the C axis. The thermal test 
piece is fixed on the machine tool table by three M10 cap 
screws supported with precision washers between the table 
and the test piece.  

 

Fig. 10: Thermal test piece with highlighted functional 
surfaces according to Wiessner et al. [Wiessner 2018a]. 

 

4.1 Results of ALC compensation 

To show the capability of the ALC compensation a thermal 
test piece with and without ALC is manufactured. The 
thermal load case for both test pieces is chosen according 
to Wiessner et al. [Wiessner 2018a]. A 4 hour warm up of 
the C-axis by rotating with 1’200 rpm, is followed by a 4 hour 
cool down phase. Once every hour five measurement 
surfaces are machined. Since the machine is located in a 
non-controlled environment, the ambient conditions for both 
experiments are slightly different, as shown in Fig. 12. 

Following the cool down phase the thermal test pieces are 
measured directly on the machine. As shown by Wiessner 
et al. [Wiessner 2018b] on-machine measurements 
performed with a touch trigger probe are comparable to the 
coordinate measurement machine (CMM) results, since the 
measurements are relative in nature and therefore only 
influenced by the temperature change during the on-
machine measurement of the specific feature. The 
measurement of one set of features takes approximately 2 
minutes. A constant temperature can be assumed during 
the measurement time. The resulting thermal deviations 
measured on the test pieces are shown in Fig. 11.  
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Fig. 11: Evaluation of dominant thermal errors of rotary axis C with and without ALC compensation shown on a thermal 
test piece. The error bars illustrate the measurement uncertainty of the test piece. 

 

The thermal prediction model for the compensated test 
piece was trained on load case C with the optimal 
parameter set found in Section 3. During the manufacturing 
of the test piece with ALC, after every measurement surface 
is machined, an on-machine measurement of the precision 
sphere is performed, to keep the prediction model up-to-
date. The results in Fig. 11 show clearly, that with the ALC 
the thermal errors of the test piece can be significantly 
reduced. The biggest remaining errors are EZOT and EROT 

(Fig. 11 c and d), this can be explained by the fact, that the 

thermal ALC is trained to compensate the relative 
deviations of the machine tool table to the TCP. Not taken 
into account is the workpiece. In the case of the thermal test 
piece, which consists of aluminium and has approximately 
double the thermal expansion coefficient as cast iron, the 
influence is not negligible. The aforementioned errors are 
directly influenced by the thermal growth of the workpiece 
and therefore only partially compensated. In the directions 
not affected by growth of the workpiece, the errors can be 
kept close to zero and in the range of the measurement 
uncertainty. 

 

 

Fig. 12: Environmental temperatures during the 
manufacturing of the test pieces with and without ALC 

compensation. 

5 SUMMARY 

This paper presents an adaptive learning control for thermal 
error compensation for 5-axis machine tools, which is 
tested on four different load cases. A parameter study is 
performed to investigate the influence of certain control 
parameters for different quality indicators of the 
compensation. It is shown that the initial training time of the 
model does not have a significant impact on the 

compensation result, but reduces the Pd drastically. 
Whereas the measurement interval after the calibration 
phase is of higher importance. The study also shows, that 
the evaluation of the compensation quality with the mean of 
percentiles is very beneficial, since the physical relationship 
remains and can be easily interpreted by machine tool 
builders and operators. 

With respect to Pd and the accuracy indicator P99, a set of 
optimal parameters is found, that shows a long-term stable 
compensation under different varying load cases and 
boundary conditions. It is shown, that even under harsh 
conditions like arbitrary use of cutting fluid and sudden 
environmental temperature changes, the ALC 
compensation remains stable and in the set boundaries of 
less than 5 µm respectively 15 µm/m. 

To show the applicability of the ALC approach two thermal 
test pieces are machined, one with and one without ALC 
compensation. The test piece produced with ALC shows a 
drastic reduction of the occurring thermal workpiece errors, 
especially in the most dominant directions Y and Z. 

The ALC approach is capable of reducing the major share 
of thermal machine tool errors, nevertheless the 
experiments of the test pieces showed, that the 
compensation needs to be extended by the influence of the 
thermal deviations of the workpiece, since the workpiece 
can have a significant different thermal expansion than the 
machine tool. This can be realized by including the 
workpiece material expansion coefficient as an additional 
parameter to the ALC. However, to volumetrically 
compensate for workpiece errors, the actual geometry of 
the workpiece at the current point in time needs to be 
known. 

To extend this approach to all five axes and the spindle, on-
machine measurement methods have to be applied or 
developed, that allow a fast and precise estimation of the 
occurring thermal errors at the TCP during production. 
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