MATERIAL REMOVAL MODE IN 3D MICRO USM

Abstract

Ultrasonic machining (USM) is known for its ability of processing brittle and hard materials such as silicon, glass and quartz. Usually, material removal in conventional USM is in brittle mode. The machined surface is covered with sharp tips and edges. In micro USM, the size of machined feature is less than 1 mm. Different from the conventional USM, in micro USM, it was found that the machined surface is flat and smooth under certain machining conditions. This indicates that the ductile material removal mode exists in micro USM. Based on the experimental observation, the surface roughness, Rpk, is used to identify the existence of ductile material removal mode in micro USM. The impact force of a single abrasive particle is calculated based on the elastic theory and crack generation. In this paper, 3D micro cavities were machined in quartz by micro USM under different machining conditions. Machined bottom surfaces were measured. Experimental results indicate that the brittle and ductile material removal modes are achievable by controlling the static load of micro USM.

Recommended articles

THE IMPACT OF SIZE REDUCTION ON THE ENERGY EFFICIENCY, DYNAMICS AND MACHINING PERFORMANCES IN MILLING

P. Haas, A. Schorderet, C. Jeannerat, J. Richard, Ch. Balistreri, N. P. Gilani
Keywords: Size reduction; Micro-machine; Milling; Energy; Dynamics; Machining performances; Air consumption; Thermal characteristics; Modal analysis

FREQUENCY RESPONSE PREDICTION FOR ROBOT ASSISTED MACHINING

A. Barrios, S. Mata, A. Fernandez, J. Munoa, C. Sun, E. Ozturk
Keywords: Robot; Dynamics; Frequency response; Receptance coupling; Machining

A STUDY OF THE APPLICATION OF VOLUMETRIC COMPENSATION BY DIRECT AND INDIRECT MEASUREMENT METHODS

M. Holub, J. Knobloch, T. Marek
Keywords: Geometric accuracy; Volumetric accuracy; Direct method; Indirect method

ESTIMATION OF ENGAGEMENT CONDITIONS USING AN ANN PATTERN RECOGNITION SYSTEM ON THE BASE OF A SENSORY TOOL HOLDER

T. Bergs, D. Scharknepper, S. Goetz
Keywords: Process monitoring; milling; Industry 4.0; ANN