MATERIAL REMOVAL MODE IN 3D MICRO USM

Abstract

Ultrasonic machining (USM) is known for its ability of processing brittle and hard materials such as silicon, glass and quartz. Usually, material removal in conventional USM is in brittle mode. The machined surface is covered with sharp tips and edges. In micro USM, the size of machined feature is less than 1 mm. Different from the conventional USM, in micro USM, it was found that the machined surface is flat and smooth under certain machining conditions. This indicates that the ductile material removal mode exists in micro USM. Based on the experimental observation, the surface roughness, Rpk, is used to identify the existence of ductile material removal mode in micro USM. The impact force of a single abrasive particle is calculated based on the elastic theory and crack generation. In this paper, 3D micro cavities were machined in quartz by micro USM under different machining conditions. Machined bottom surfaces were measured. Experimental results indicate that the brittle and ductile material removal modes are achievable by controlling the static load of micro USM.

Recommended articles

MODELLING AND OPTIMIZATION OF THE CUTTING FORCES DURING TI6AL4V MILLING PROCESS USING THE RESPONSE SURFACE METHODOLOGY AND DYNAMOMETER

I. A. Daniyan, I. Tlhabadira, S. N. Phokobye, M. Siviwe, K. Mpofu
Keywords: Cutting speed; Depth of cut; Feed; Piezoelectric sensors; Process parameters

CHATTER AVOIDANCE IN MILLING BY USING ADVANCED CUTTING TOOLS WITH STRUCTURED FUNCTIONAL SURFACES

J. Baumann, E. Krebs, D. Biermann
Keywords: Cutting tools; Chatter avoidance; Surface structures

SURFACE INTEGRITY IN TURNING OF FE17CR2NI0.2C IRON BASED THERMALLY SPRAYED COATINGS WITH SPECIAL RESPECT TO THE INFLUENCE OF THE FEED

H. Liborius, A. Nestler, G. Paczkowski, A. Schubert, T. Grund , T. Lampke
Keywords: Surface integrity; Thermally sprayed coatings; Turning

STRATEGY OF MILLING CENTER THERMAL ERROR COMPENSATION USING A TRANSFER FUNCTION MODEL AND ITS VALIDATION OUTSIDE OF CALIBRATION RANGE

M. Mares, O. Horejs, S. Fiala, Ch. Lee, S. M. Jeong, K. H. Kim
Keywords: Thermal error; Compensation; Accuracy; Machine tool; Cutting process