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Abstract 

This paper presents the modal control applied to motion systems, in particular for machine tools. This 
control approach is particularly suitable for over-actuated systems that have more actuators than degrees 
of freedom. By using the modal approach, the parameterisation of the control loops is simplified since 
each control loop corresponds to a specific eigenmode. 
A four-variable modal control of a linear motor-driven gantry system equipped with additional active 
damping devices is presented to achieve active vibration suppression. This approach is experimentally 
compared with a conventional control method that does not consider the eigenmodes of the system. The 
influence of the vibration controllers on the closed position loops is investigated. 
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1 INTRODUCTION 

Modal control is a control technique that aims at a complete 
diagonalisation of the system equations. Therefore, the 
modal control can be used to decouple the input-output 
behaviour of linear multivariable systems. The modal 
control for systems with lumped parameters was first 
indicated by [Rosenbrock 1962]. The modal control of 
systems with distributed parameters was introduced by 
[Murray-Lasso 1965] and [Gould 1966]. A detailed overview 
of the theory of modal control is given in [Simon 1968], 
[Porter 1972] and [Meirovitch 1990]. Between the 1970s 
and 1980s (see e.g. [Balas 1978] and [Meirovitch 1983b]) 
the modal space control was widely used for vibration 
suppression of flexible structures such as parts of 
spacecrafts. One of the most important control logics is the 
independent modal space control of the system’s 
eigenmodes [Meirovitch 1983a]. Unlike other control logics, 
the modal control strategy has a well-defined physical 
meaning in the gain matrix definition [Serra 2013]. 

In general, controller tuning for multivariable systems, like 
machine tools, is not a straightforward task, especially 
when parallel acting drives and additional actuators are 
used. In this paper, the modal space control is applied to 
motion systems, in particular for machine tools. This 
approach represents a promising concept since the 
decoupled control loops are easier to design. 

An essential goal in the development of machine tools is to 
increase productivity while maintaining or improving the 
accuracy of motion. For example, the increase in 
productivity can be achieved by increasing the dynamics of 
the machine tool. Linear motors are frequently used instead 
of conventional electromechanical drives for this purpose. 
In addition, lower moving masses [Kroll 2011], the use of 

redundant axis configurations [Schröder 2007] and higher 
drive forces can improve the dynamics of the moving 
components. For this reason, lightweight designs and 
multiple actuators per axis direction are increasingly used 
in machine tools. The so-called parallel drives are drive 
arrangements in which at least two drives are mechanically 
coupled via the machine structure and act on the same 
degree of freedom of movement [Peukert 2017]. A well-
known representative is the gantry type axis. 

Highly dynamic motions cause both the moving structural 
assembly (e.g. slide) and the underlying machine structure 
(e.g. frame) to vibrate. High vibration amplitudes result 
especially for lightweight structures. Vibrations in machine 
tools lead to a deterioration in machining quality and must 
be avoided. In order to increase the dynamics while 
maintaining or improving the motion quality, measures to 
reduce or avoid vibrations are necessary. Methods for 
reducing the reaction force impacts are, for example, 
impulse decoupling [Drossel 2016], impulse compensation 
[Ihlenfeldt 2018] and Kinematically Coupled Force 
Compensation [Ihlenfeldt 2019]. An overview of methods 
for reducing the reaction force effect is given in [Großmann 
2014]. Vibrations of the moving structure cannot be 
influenced by the aforementioned methods. However, such 
vibrations can be damped by the feed drives. In [Brecher 
2013a], for example, drive-based vibration damping was 
used to increase the damping ratio of the first natural 
frequency by appropriate filtering of the measured position 
of the position control loop of a feed axis. In general, the 
reduction of the dynamic compliance of the machine tool at 
the Tool Centre Point (TCP) is aspired in order to increase 
the process stability and the chatter limit [Löser 2018]. This 
can be achieved by increasing the system’s damping, e.g. 
by using passive or active damping systems. The tuned 
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mass damper represents the most common passive 
auxiliary system. Because of its simplicity, it is widely used 
in machine tools. For example, [Yang 2010] applied multiple 
tuned mass dampers to increase chatter resistance of 
machine tool structures. However, active systems such as 
Active Damping Devices (ADDs) are preferred since they 
can achieve a higher power density than passive systems 
[Brecher 2013b]. In addition, damping actuators can be 
integrated relatively easily into existing machine tools 
without any design changes. It has been shown in 
numerous applications that such systems can significantly 
increase productivity and surface quality during milling (see 
e.g. [Lopez de Lacalle 2009]). Usually, the drives required 
for motion generation, as well as the additional, actuators 
are controlled independently, without considering mutual 
influences. The main drawback of this method is that the 
mechanical coupling is neglected and, thus, an interference 
between the control loops occurs, which makes the design 
of the controllers difficult [Belyaev 2017]. 

Most studies on modal control are limited to simple 
experimental set-ups such as beams [Wang 2002]. 
Exceptions are the modal state feedback control in 
combination with a modal state-observer of a flexible 
hydraulic manipulator [Resta 2010], the modal control of a 
3 degree of freedom flexible parallel manipulator [Zhang 
2014] and a model-based decoupling control for a dual-
drive H-type gantry stage [Garcia-Herreros 2013]. 
However, the modal control approach offers advantages for 
the controller design of machine tools, which are 
demonstrated by means of the presented experimental 
study. 

There are two preliminary studies for this contribution. 
Firstly, the modal control for vibration damping of an elastic 
structure (fixed gantry bridge) damped by two ADDs was 
investigated experimentally. Different control laws, 
including resonant vibration controllers, were analysed. 
Also, the modal space control was compared with the 
conventional control approach. It was possible to show that 
the modal decoupling allowed a simplified parameterisation 
of the control loops [Peukert 2019a]. Secondly, the modal-
space control of a linear motor-driven gantry arrangement 
equipped with two ADDs was analysed through a simulation 
based process [Peukert 2019b]. With the modal control 
concept, a better closed loop behaviour can be achieved, 
while the disturbance behaviour at the TCP is the same as 
with the conventional approach. 

In this paper, the aforementioned system is investigated 
experimentally. The system under consideration is 
decoupled by using the modal transformation, so that 
several modal control loops can be designed. 

2 MODAL-SPACE CONTROL FORMULATION 

With the use of a transformation between physical 
coordinates 𝒒 and modal coordinates 𝝃: 

𝒒 = 𝜱𝝃, (1) 

where 𝜱 is the matrix of the eigenvectors, the equation of 
motion of a mechanical system 

𝑴�̈� + 𝑫�̇� + 𝑲𝒒 = 𝒇 (2) 

can be written in its modal form 

�̈� + 𝜟�̇� + 𝜦𝝃 = 𝛤−𝟏𝝉. (3) 

The system in Eq. (2) is defined by the matrices of inertia 
𝑴, damping 𝑫 and stiffness 𝑲 as well as the vector of 

torques and forces 𝒇, which correspond to the coordinates 

𝒒. The vector 𝝉 = 𝜱T𝒇 represents the modal loads. The 

matrices of the modal inertias 𝛤 and eigenvalues 𝜦 have 

entries only on their main diagonal. In the case of a lightly 
damped system the matrix of the modal damping ratios 𝜟 

can approximately be written as a diagonal matrix as well. 
Under these conditions, Eq. (3) consists of 𝑁 independent 

equations: 

𝜉�̈� + 2𝛿𝑖𝜉�̇� + 𝜔𝑖
2𝜉𝑖 = 𝛾𝑖

−1𝜏𝑖 , with  𝑖 = 1…𝑁. (4) 

The aim of the modal approach is to control these 
independent modal systems. Therefore, the modal control 
laws are defined by 

𝜏C,𝑖 = 𝑅mod,𝑖(j𝜔)𝜉C,𝑖 , with  𝑖 = 1…𝑛C, (5) 

for a number 𝑛C of modal coordinates 𝝃C. The modal 

coordinates are not physical coordinates and, therefore, 
cannot be measured directly. The determination of the 
modal coordinates can be achieved by means of observers 
[Resta 2010], spectral filters [Skidmore 1985] or modal 
filters [Meirovitch 1985]. In this paper, the calculation of 𝝃C 

and the actuator forces 𝒇A is achieved by the modal filter 

𝜳T and the modal synthesizer 𝜣 (see [Zhang 2014]): 

 𝝃C = 𝜳
T𝒒S with 𝜳

T = (𝜱CS)
−1 and (6) 

𝒇A = 𝜣𝝉C with  𝜣 = (𝜱CA
T )

−1
. (7) 

𝜱CS represents a submatrix of 𝜱 that contains only the 

columns of the controlled modes 𝝃C and the rows of the 

measured coordinates 𝒒S. In 𝜱CA the rows corresponding 

to the forces 𝒇A are used. In order to invert the matrices in 
Eq. (6) and (7) there needs to be as many sensors and 
actuators as controlled modes. Generally, the sensors and 
actuators need to be placed in such a way that they are not 
located in the vibration nodes of the controlled eigenmodes. 
Since the full transformation 𝜱 is not used, mode shapes 

that are not controlled influence the estimates of 𝝃C. 

Furthermore, the forces 𝒇A also act on the uncontrolled 

modes. These effects are known as spillover [Meirovitch 
1983c, Braghin 2012]. Spillover effects can be reduced if a 
sufficient number of sensors and actuators are used [Inman 
2001]. It is recommended to position the actuators in the 
vibration nodes of the lowest uncontrolled modes and to 
place the sensors in the vibration nodes of the lowest 
unobserved modes [Wang 2002]. 

3 EXPERIMENTAL SETUP 

The object of investigation is a linear motor-driven gantry 
system, which is moving in Y-direction (see Fig. 1). Two 
ADDs (ADD-45N, Micromega®) are mounted on the 
movable X-saddle. The physical principle and the 
corresponding transfer function of the inertial actuator are 
illustrated in Fig. 2, right. For this study, the X-saddle 
(approx. 15 kg) is fixed in the centre of the gantry feed axis 
by using clamping elements. The different feedback 
controllers are implemented in the programmable logic 
controller in the TwinCAT® real time system. Several 
EtherCAT® terminals are used to enable the connection of 
the sensors/actuators. The communication between the 
sensors/actuators and the control unit is realised by an 
EtherCAT® fieldbus. A numerical model was developed in 
order to conduct simulative investigations regarding 
suitable control concepts, optimal sensor/actuator 
placements and was also used for the preliminary design of 
the components of the test rig [Peukert 2019b]. The test rig 
is illustrated in Fig. 1. 𝑦le,1 and 𝑦le,2 are the positions, 

measured with the linear encoders. �̈�acc,1, �̈�acc,2, �̈�acc,3 and 

�̈�acc,4 are the signals measured by the accelerometers. 
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Fig. 1: Linear motor-driven gantry system with two ADDs. 

In order to excite the modes in the X-Y-plane, the system is 
excited by an impulse hammer inclined 60° to the Y-axis as 
can be seen in Fig. 2, left. An additional accelerometer is 
used to measure the acceleration �̈�Imp in the same direction 

as the force 𝑓Imp is applied. A frequency analyser PULSE 

Modal 3560C (Brüel & Kjaer) is used to calculate the 
frequency response functions (FRFs). 

 

Fig. 2: Location and direction of the excitation (left) and 
model of the inertial actuator (right). 

Fig. 3 shows the open loop FRFs and the target mode 
shapes of the analysed gantry system. The first eigenmode 
corresponds to the rigid body motion of the gantry bridge. 

 

Fig. 3: Open loop FRF and the mode shapes of interest. 

4 EXPERIMENTAL ANALYSIS OF THE LINEAR 
MOTOR-DRIVEN GANTRY SYSTEM 

Firstly, the dynamic behaviour of the gantry system needs 
to be analysed. For this purpose, the system is excited by 
each of the four actuators, whereby pseudo random binary 
sequences (PRBS) are used as input force values. A low 
bandwidth motion controller keeps the gantry-stage in 

continuous motion to avoid issues arising from the static 
friction of the guiding system. With the acceleration 
measurement of the four coordinates (compare Eq. 8), the 
matrix 𝑮(j𝜔), which describes the systems FRFs is 

identified: 

𝒚 = (

𝑦acc,1
𝑦acc,2
𝑦acc,3
𝑦acc,4

) = (
𝐺11(j𝜔) ⋯ 𝐺14(j𝜔)

⋮ ⋱ ⋮
𝐺41(j𝜔) ⋯ 𝐺44(j𝜔)

)

⏟                
𝑮(j𝜔)

∙

(

 
 

𝑓LM,1
𝑓LM,2
𝑓ADD,1
𝑓ADD,2)

 
 

. (8) 

The amplitudes of the four FRFs of the main diagonal of 
𝑮(j𝜔) are shown in Fig 4 (blue compliance curves). The 

peak of the fourth mode (approx. 100 Hz) appears in each 
diagram, whereas the peak of the second mode (approx. 
20 Hz) occurs in 𝐺11(j𝜔) and 𝐺22(j𝜔) only, since the 

corresponding mode shape cannot be detected with the 
third and fourth accelerometer. On the other hand, the third 
mode (approx. 50 Hz) can be found in 𝐺33(j𝜔) and 𝐺44(j𝜔) 
but not in 𝐺11(j𝜔) and 𝐺22(j𝜔). Therefore, the third mode 

cannot be excited with the linear motors. 

4.1 Modal decomposition of the system 

In order to control the modes of interest independently, the 
modal control loops should not affect each other. Therefore, 
the modes in the modal transfer functions of 𝑮mod (compare 

Eq. (9)), need to be sufficiently separated. The goal of the 
separation is to have only one resonance peak per modal 
FRF 𝐺mod,𝑖𝑖(j𝜔). In order to design the modal system, the 

modal filter and the modal synthesizer need to be 
determined. With the matrix of the system’s transfer 
functions 𝑮(j𝜔) the matrices 𝜱CS and 𝜱CA, can be found. 

Since the actuators and sensors are nearly collocated, 
these matrices are approximately equal. With Eq. (6) and 
(7), the modal transformation of the system is obtained: 

(

𝜉C,1
⋮
𝜉C,4

) = 𝜳T ∙ 𝑮(j𝜔) ∙ 𝜣⏟        
𝑮mod(j𝜔)

∙ (

𝜏C,1
⋮
𝜏C,4

). (9) 

The quality of the mode decomposition is verified by 
measuring the frequency response characteristics of the 
system, which correspond to each of the modal control 
loops. The main diagonal entries of the modal FRF matrix 
𝑮mod(j𝜔) are illustrated in Fig. 4 as well. Here, the first four 

modes are decoupled by means of the modal 
transformations. This can be seen by the corresponding 
peaks, which only appear in one of the main diagonal 
elements (red curves in Fig. 4). 𝐺mod,11(j𝜔) shows a 

behaviour comparable to that of a second-order integrator, 
because the first mode represents the rigid body motion. 
The modes are separated efficiently, and the mutual 
influence of the modal loops is rather small. However, the 
truncated modes also appear in the FRFs of 𝑮mod(j𝜔) as 

shown in Fig. 4 bottom, left. This effect corresponds to the 
aforementioned spillover problem. 
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Fig. 4: Comparison of the main diagonal entries of the 
FRF-matrices, indicated in Eq. 8 and 9. 

4.2 Approaches for active damping control 

Fig. 5 shows a conventional control approach, where two 
cascaded position and velocity controllers (CPV) for both 
linear motors (LMs), as well as two additional controllers 
𝑅loc,𝑖 for both ADDs, are used. The velocity loop consists of 

a PI-controller, whereas a P-controller is used in the 
position loop. Since each of the four controllers utilises an 
almost collocated actuator/sensor pair, this concept is 
called local control (LC) in this paper. 

The modal control approach (MC) is displayed in Fig. 6. In 
this case, four acceleration signals are used and the 

transformation into modal coordinates 𝜉C̈,𝑖 is achieved. This 

allows four modal control laws 𝑅mod,𝑖, whose outputs 𝜏C,𝑖 

are used to calculate the actuator forces, to be defined. The 
force values for the first two actuators are added to the 
values calculated by the CPV controllers. 

 

Fig. 5: Local control concept (LC). 

 

Fig. 6: Modal control concept (MC). 

The next step is to define the local and modal transfer 
functions 𝑅(j𝜔), which represent the control laws for active 

damping. Since the actuators and sensors are nearly 
collocated, a force value that has a phase shift of 180° 
relative to the velocity is necessary to reduce vibration of a 
specific frequency [Gazzulani 2012]. Because 
accelerations are measured, an integrator (I) with a 
negative sign fulfils this demand. Therefore, the gain of the 
controller rolls off for higher frequencies. The complete 
control law, which is applied for both the local and modal 
approach, is given by: 

𝑅(j𝜔) = −𝑘⏟
gain

∙
1

j𝜔⏟
I

∙
j𝜔

(j𝜔+𝜔H)⏟    
HP

∙
(j𝜔+𝜔1)

(j𝜔+𝜔2)⏟    
PL

=
−𝑘(j𝜔+𝜔1)

(j𝜔+𝜔H)(j𝜔+𝜔2)
 . (10) 

An additional high-pass filter (HP) is used, which avoids 
issues at low frequencies arising due to the integration. The 
objective of the phase-lead compensator (PL) is to get a 
higher phase margin and therefore to achieve a good 
control performance in a wider range of frequencies. The 
chosen control law forms a band-limited integrator, where 
the eigenfrequencies of the system do not have to be 
known exactly. The control law formulated in Eq. 10 is 
therefore insensitive to small parameter variations. This is 
advantageous for a practical application in machine tools, 
as the natural frequencies usually change depending on the 
mechanical configuration. However, when the 
eigenfrequencies of the system change in a wider range, 
the stability is not guaranteed. In addition, a variation of the 
mode shapes of the system requires the adaptation of the 
modal filter and the modal synthesizer in order to achieve a 
good separation of the modal control loops. However, this 
aspect is not addressed in this paper. The control 
parameters that are used in the remainder of this paper are 
listed in Tab. 1. 

The frequency response functions given in Fig. 4 play an 
important role in the process of the control design, because 
they represent the systems behaviour from the “view” of the 
controllers. The local controllers 𝑅loc,1 and 𝑅loc,2, for 

example, are set to match 𝐺33(j𝜔) and 𝐺44(j𝜔). By contrast, 

the modal controllers 𝑅mod,𝑖 match the corresponding 

modal transfer function 𝐺mod,𝑖𝑖(j𝜔). Since only one of the 

considered eigenmodes appears in each of the modal 
transfer functions of the system, it is possible to find 
individual parameter sets for the modal controllers. In the 
case of the local approach, all eigenmodes appearing in 
𝐺33(j𝜔) and 𝐺44(j𝜔) have to be taken into account. 

Control design with frequency response method 

An issue of the control approaches described in this paper 
is that the transfer functions of the controllers and the 
corresponding parameters have to be defined. For this 
purpose, experiments can be utilised. However, this would 
lead to an increased measuring effort. Another way is the 
use of a simulation model. This requires an accurate 
system knowledge to get representative results, and 
inaccuracies due to approximations are unavoidable. 

 

Fig. 7: Simplified control loop. 

For the investigations in this work, the experimental 
identified matrix of FRFs of the system given in Eq. (8) is 
used. Each element 𝐺𝑖𝑘(j𝜔) of 𝑮(j𝜔) corresponds to a list 

of complex values for a discrete number of frequencies 
2𝜋𝜔𝑘 (𝑘 = 1…𝑁). Fig. 7 shows a simple model of the 
closed control loop. The output 𝒚 can be calculated by: 
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𝒚 = 𝑮 ∙ (𝒇C + 𝒇dist) = 𝑮𝑹 ∙ (𝒚ref − 𝒚) + 𝑮 ∙ 𝒇dist , (11) 

⇒ 𝒚 = (𝑮𝑹 + 𝐄)−1𝑮𝑹 ∙ 𝒚ref + (𝑮𝑹 + 𝐄)
−1𝑮⏟        

𝑮dist

∙ 𝒇dist , (12) 

where 𝐄 is the identity matrix. Therefore, (𝑮𝑹 + 𝐄)−1𝑮𝑹 
represent the closed loop transfer function and 𝑮dist the 

system’s response behaviour caused by a disturbance 
𝒇dist. In the case of the damping control, for example, 𝑮dist 
is important because the aim is to improve the dynamic 
stiffness of the system. With a given matrix of controller 
transfer functions 𝑹 and the measured open-loop-system 
𝑮, 𝑮dist can be calculated with Eq. (12) for the discrete 

frequencies 2𝜋𝜔𝑘. In Fig. 8 the measured open loop FRF 

𝐺44 and the calculated, as well as the measured, FRFs 

𝐺dist,44 for modal control are displayed as an example. 

 

Fig. 8: Measured open loop FRFs and the calculated as 
well as the measured modal closed loop control FRFs. 

The modal damping control with the parameters given in 
Tab. 1 is used here. The diagram shows a good conformity 
between the calculated and the measured curve. Therefore, 
the calculation in Eq. (12) based on the knowledge of the 
open loop FRFs 𝑮 is an efficient method to estimate the 

closed loop behaviour. It allows for an examination of a 
wide variety of parameters and the finding of an appropriate 
solution. Optimisation algorithms are possible as well. In 
this study, frequency response design methods (see e.g. 
[Dorf 2011]) are applied in order to determine the structure 
(see Eq. (10)) and the parameters of the controllers. The 
parameters are analysed with the aforementioned method 
and are changed iteratively. The final control design chosen 
is then verified by experiments. 

Tab. 1: Parameters of the local and modal control loops. 

controller 𝒌/(𝐍𝐬𝟐/𝐦) 𝝎𝐇/𝐇𝐳 𝝎𝟏/𝐇𝐳 𝝎𝟐/𝐇𝐳 

𝑅mod,1 200 10 ∙ 2π 200 ∙ 2π 8000 ∙ 2π 

𝑅mod,2 400 10 ∙ 2π 100 ∙ 2π 500 ∙ 2π 

𝑅mod,3 1000 20 ∙ 2π 100 ∙ 2π 500 ∙ 2π 

𝑅mod,4 500 40 ∙ 2π 200 ∙ 2π 1000 ∙ 2π 

𝑅loc,1 1000 20 ∙ 2π 100 ∙ 2π 500 ∙ 2π 

𝑅loc,2 1000 20 ∙ 2π 100 ∙ 2π 500 ∙ 2π 

 

4.3 Experimental analysis of the active damping 
control 

In order to examine the dynamic behaviour of the local and 
modal control strategy for different controller gains, each of 
the controllers is investigated individually. For this analysis, 
the CPVs of the linear motors are deactivated. The system 

is excited by an impulse hammer, as illustrated in Fig. 2, 
left. 

Both of the local controllers act on mode three and four, 
resulting in increased damping ratios of the corresponding 
peaks at approximately 50 and 100 Hz. The FRFs for the 
local controllers are very similar and therefore only the 
frequency behaviour of one local controller is depicted here. 
As an example, Fig. 9 shows the FRF of the system when 
only the second local controller 𝑅loc,2 is active. The 

parameters given in Tab. 1 are used, except the gain 𝑘loc,2, 

which is varied in this experiment. The second eigenmode 
(approx. 20 Hz) is not affected because of the location of 
the ADDs. As mentioned in Section 4.1, this mode does not 
appear in 𝐺44(j𝜔) and for this reason, the force output of 

the local controllers 𝑅loc,1 and 𝑅loc,2 cannot influence it. 

Each local controller may have a high gain value. However, 
when activating both local controllers, stability problems 
occur because of the mutual influence of the actuators 
(compare [Peukert 2019a]). 

 

Fig. 9: Measured FRFs for different gains of the second 
local controller (first local controller inactive). 

The experiment is repeated for the modal approach. In 
Fig. 10 the variation of the gain of the modal controller 
𝑘𝑚𝑜𝑑,2 is shown. It is evident that only the damping ratio of 

the second natural frequency has changed. 

 

Fig. 10: Measured FRFs for different gains of the second 
modal controller (all other modal controllers inactive). 

Fig. 11 depicts the FRFs whereby the gain 𝑘𝑚𝑜𝑑,3 is varied. 

In this case, only the third mode is affected. Conversely, the 
fourth modal controller increases only the damping ratio of 
the eigenfrequency at approx. 100 Hz, which is illustrated 
in Fig. 12. In conclusion, it is shown that each modal 
controller is acting on only one of the system’s eigenmodes 
and does not affect the others. This proofs the successful 
separation discussed in Section 4.1. The advantage of this 
effect is that the control laws can be designed for each 
eigenmode individually, which simplifies the whole 
controller parameterisation. 
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Fig. 11: Measured FRFs for different gains of the third 
modal controller (all other modal controllers inactive). 

 

 

Fig. 12: Measured FRFs for different gains of the fourth 
modal controller (all other modal controllers inactive). 

4.4 Reference and disturbance behaviour of the 
gantry-arrangement 

In the next step, the influence of the additional damping 
controllers on the closed loop FRFs of the feed drives is 
investigated. For each linear motor, a CPV is used. For 
each control strategy, the same values are set in the 
velocity controller (𝐾P = 2480 N/(m/s), 𝑇N = 15 ms). 
Fig. 13 displays the measured closed loop transfer function 
of the position control (reference behaviour). The local and 
modal approach are compared as well as position control 
without additional active damping. In each case, the gains 
𝐾V of the position loops are tuned individually while keeping 

all maxima of the response functions close to 1 (0 dB). 

 

Fig. 13: Measured closed loop FRFs. 

As a result of the experiment, the local damping controller 
leads to a reduced bandwidth compared to the control 
without additional damping. A further increase of 𝐾V for the 

local control approach would lead to a higher amplitude at 
approx. 20 Hz in Fig. 13, well above 0 dB, and would mean 
an unwanted overshoot of the target position. This is due to 
the active dampers counteracting the movement of the 
linear drives. In the case of the modal control, there is no 
reduction of the bandwidth as the control bandwidth is 
increased by 25 %. The decoupling control allows each 
eigenmode to be treated individually. Therefore, the 
second, third and fourth mode, which are representing the 
target vibration modes, can be damped with high gains with 
no influence on the position control. Conversely, in the first 
modal control loop, which acts on the rigid body movement, 
a low gain value is used. The disturbance behaviour of the 
closed loops, which is measured with the impulse hammer, 
is depicted in Fig. 14. The local and modal damping 
controllers can be seen to achieve a similar behaviour. If 
the gains 𝑘loc,1 and 𝑘loc,2 would be reduced to realise a 

higher control bandwidth for the closed loop FRF depicted 
in Fig. 13, the disturbance response would deteriorate. 

 

Fig. 14: Comparison of the measured FRFs: disturbance 
behaviour (excitation with impulse hammer). 

Comparison of the actuator forces 

The following analysis is intended to compare the 
interference between the control loops for both control 
strategies. The system is excited using ADD 2 and the 
resulting force amplitudes of the actuators are compared. 
This can be assumed as a disturbance due to a process 
force at the TCP. The resulting compensation forces of the 
actuators are measured and analysed in the frequency 
domain. 

Fig. 15 compares the magnitudes of the ADDs in the 
frequency domain for the local and modal control approach. 
The controller gains, specified in Tab. 1, are used. The local 
and modal control loops are tuned to achieve a similar 
damping behaviour at the frequencies of the controlled 
mode shapes. It can be seen that at a frequency of approx. 
100 Hz the force amplitudes of the local controller are 
higher than the modal ones. This results from the fact that 
in the case of the modal approach the linear motors are 
used as well as the active dampers. The required forces are 
distributed between the linear motors and the damping 
actuators. This is a positive effect because it is possible to 
downsize the additional damping actuators when the modal 
control approach is applied. A closer look at the frequency 
at approx. 50 Hz shows that the amplitudes are almost the 
same. Since the linear drives have no influence on this 
mode, only the ADDs are able to affect it, both with modal 
and local control. 
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Fig. 15: Measured FRFs of the compensation forces 
resulting from the ADDs, (CPV active, excitation with 

ADD 2). 

In Fig. 16 the amplitudes of the linear motors are depicted, 
which are measured under the same conditions as the 
forces of the ADDs in Fig. 15. The curve characteristic of 
the compensation forces resulting from the linear motors of 
the modal control is almost the same as the case when no 
active damping is present (compare Fig. 16). Furthermore, 
it can be seen from Fig. 15 and 16 that in the frequency 
range below approx. 20 Hz, the amplitudes of the local 
damping control are higher than the amplitudes of the 
modal control and the one without additional damping. 
Therefore, it seems that for the local approach, the forces 
of the linear motors counteract the forces of the ADDs in 
this frequency range. It fits to the fact that the different 
control loops disturb each other. In contrast, there is a 
negligible interference between the ADDs and the linear 
motors in this frequency range for the modal control. This is 
likely to have a positive effect on the command response. 

 

Fig. 16: Measured FRFs of the compensation forces 
resulting from linear motor 1, (CPV active, excitation with 

ADD 2). 

5 SUMMARY 

Usually, the actuators or drives of motion systems or 
machine tools are controlled independently of each other, 
without considering their coupling. In this paper, the modal 
control approach has been applied to consider the 
mechanical coupling. This has made it possible to control 
the eigenmodes individually and to damp the excited 
vibrations with all available actuators. This model-based 
control approach is particularly suitable for motion systems, 
such as machine tools, which have more drives or actuators 
than degrees of freedom of movement. Experimental 
results of the modal control of a gantry arrangement have 

been presented. With the implemented modal four-variable 
control, the control bandwidth of the position controllers was 
able to be increased and a similar disturbance behaviour at 
the TCP was achieved, compared to the local approach. 
Due to the increased control bandwidth, the dynamic path 
accuracy and thus the accuracy of the workpiece is 
improved. Furthermore, by applying the modal decoupling 
technique, the parameterisation of the controllers is 
simplified. The modal control approach is advantageous 
since all sensor signals are taken into account in each 
modal control loop. In addition, the modal forces required 
for vibration damping are specifically generated by all 
existing actuators. 

Since the eigenfrequencies of the system are not used 
directly to tune the proposed controllers, small changes of 
these values do not cause stability issues. However, when 
the parameters of the system, in particular the mode 
shapes, vary in a wider range, the advantages of the modal 
approach will disappear if the control parameters are not 
adapted. Therefore, the consideration of parameter 
variations of the dynamic behaviour of the system, 
especially by the variation of mode shapes due to different 
poses, will be the subject of future research. 
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