MODELLING AND OPTIMIZATION OF THE CUTTING FORCES DURING TI6AL4V MILLING PROCESS USING THE RESPONSE SURFACE METHODOLOGY AND DYNAMOMETER

  • 1Department of Industrial Engineering, Tshwane University of Technology, Pretoria, ZA
  • 2Department of Mechanical & Mechatronics Engineering, Tshwane University of Technology, Pretoria, ZA
  • 3Soshanguve, ZA
  • 4Institute of Advanced Tooling, Tshwane University of Technology, Pretoria, ZA

Abstract

The measurement of cutting forces using highly sensitive piezoelectric force sensors is significant in the optimization of the machining process. In this study, the modelling and optimization of the cutting forces during the milling process of Ti6Al4V was carried out using the Response Surface Methodology (RSM) and the dynamometer. The ranges of the process parameters are: cutting speed (250-280 mm/min), feed per tooth (0.06-0.24 mm) and axial depth of cut (0.30-3.0 mm) are varied over four levels while cutting force serves as the response of the designed experiment. The physical experiments were carried out using a DMU80monoBLOCK Deckel Maho 5-axis CNC milling. Three sets of 2- flute, 10 mm corner radius mills was used for the machining operation. A solid rectangular work piece of Ti6Al4V was screwed to the stationary dynamometer (KISTLER 9257A 8-Channel Summation of Type 5001A Multichannel Amplifier) mounted directly to the machine table. Milling operations were performed using different cutting parameters of cutting speed, feed per tooth and depth of cut and data were collected through Data Acquisition (DAQ) connected to the computer. The numerical experiment produced a mathematical model for predicting the values of the cutting forces as a function of the independent process parameters while the physical experiment revealed that the piezoelectric sensor is highly sensitive to variations in the values of the cutting force.

Recommended articles

ESTIMATION OF ENGAGEMENT CONDITIONS USING AN ANN PATTERN RECOGNITION SYSTEM ON THE BASE OF A SENSORY TOOL HOLDER

T. Bergs, D. Scharknepper, S. Goetz
Keywords: Process monitoring; milling; Industry 4.0; ANN

HIGH-RESOLUTION GEOMETRY MEASUREMENT WITH A COLLABORATIVE ROBOT

M. Riedl, R. Danzl, M. Felberbauer, T. Lankmair
Keywords: Focus Variation | Robot | integration | 3D dataset | optical metrology | 3D measurement | automation | collaborative | Inline

INVESTIGATION ON THE PRODUCTIVITY OF MILLING TI6AL4V WITH CRYOGENIC MINIMUM QUANTITY LUBRICATION

D. Gross, M. Appis, N. Hanenkamp
Keywords: Carbon dioxide; Cryogenic; CMQL; Ti6Al4V; Milling; Spray test

ANALYSIS OF SURFACE POST-PROCESSING TECHNIQUES FOR IMPROVEMENT OF ADDITIVE MANUFACTURED PARTS IN AEROSPACE

M. O. Oyesola, K. Mpofu, N. Mathe, S. Hoosian, I. Tlhabadira
Keywords: Additive manufacturing; Post-processing; Aerospace