NICKEL-BASED ALLOY DRY MILLING FORCE AND TEMPERATURE BY USING MONOLITHIC CERAMIC END MILL TOOL

Abstract

Nickel-based alloys are known to be difficult to cut material, which can cause high cutting forces and temperature rise which always leads to excessive tool wear. Traditional views hold the opinion that cutting temperature rise could lead to negative effects. However, milling under high temperature, cutting material can get a thermal softening effect. In this research, the monolithic ceramic end mill was used. By using high temperature generated at the shear zone, the nickel-based alloy can be easily cut and achieved a high material removal rate. The experiment result shows, with the rise of cutting speed, cutting forces can be reduced.

Recommended articles

FREQUENCY RESPONSE PREDICTION FOR ROBOT ASSISTED MACHINING

A. Barrios, S. Mata, A. Fernandez, J. Munoa, C. Sun, E. Ozturk
Keywords: Robot; Dynamics; Frequency response; Receptance coupling; Machining

PRODUCTIVITY INCREASE OF HIGH PRECISION MICRO-MILLING BY TRAJECTORY OPTIMIZATION

A. Schorderet, R. Herzog, N. Jacquod, Y. Marchand, Ch. Prongue
Keywords: Milling; Vibrations; Trajectory optimization; Surface quality; CNC

STRATEGY OF MILLING CENTER THERMAL ERROR COMPENSATION USING A TRANSFER FUNCTION MODEL AND ITS VALIDATION OUTSIDE OF CALIBRATION RANGE

M. Mares, O. Horejs, S. Fiala, Ch. Lee, S. M. Jeong, K. H. Kim
Keywords: Thermal error; Compensation; Accuracy; Machine tool; Cutting process

CONTROL OF HYBRID ELECTRIC-HYDRAULIC DRIVE FOR VERTICAL FEED AXES OF MACHINE TOOLS

S. Fiala, A. Bubak, L. Novotny
Keywords: Research Center of Manufacturing Technology | 1Czech Technical University in Prague