NICKEL-BASED ALLOY DRY MILLING FORCE AND TEMPERATURE BY USING MONOLITHIC CERAMIC END MILL TOOL

Abstract

Nickel-based alloys are known to be difficult to cut material, which can cause high cutting forces and temperature rise which always leads to excessive tool wear. Traditional views hold the opinion that cutting temperature rise could lead to negative effects. However, milling under high temperature, cutting material can get a thermal softening effect. In this research, the monolithic ceramic end mill was used. By using high temperature generated at the shear zone, the nickel-based alloy can be easily cut and achieved a high material removal rate. The experiment result shows, with the rise of cutting speed, cutting forces can be reduced.

Recommended articles

DEVELOPMENT OF A METHOD TO DETERMINE CUTTING FORCES BASED ON PLANNING AND PROCESS DATA AS CONTRIBUTION FOR THE CREATION OF DIGITAL PROCESS TWINS

A. Hänel, E. Wenkler, T. Schnellhardt, C. Corinth, A. Brosius, A. Fay, A. Nestler
Keywords: Digital process twin; Machine data collection; Cutting forces; Process data; Milling

INVESTIGATION ON THE PRODUCTIVITY OF MILLING TI6AL4V WITH CRYOGENIC MINIMUM QUANTITY LUBRICATION

D. Gross, M. Appis, N. Hanenkamp
Keywords: Carbon dioxide; Cryogenic; CMQL; Ti6Al4V; Milling; Spray test

MACHINING OF THIN BLADE USING VIBRATION PREDICTION AND CONTINUOUS SPINDLE SPEED CONTROL

P. Vavruska, M. Sulitka, M. Stejskal, A. Simunek, J. Falta, P. Heinrich, M. Kopal
Keywords: Machining; Optimization; Spindle speed control; Feed-rate control; FEM analysis; Deformation; Quality

ANALYSIS OF SURFACE POST-PROCESSING TECHNIQUES FOR IMPROVEMENT OF ADDITIVE MANUFACTURED PARTS IN AEROSPACE

M. O. Oyesola, K. Mpofu, N. Mathe, S. Hoosian, I. Tlhabadira
Keywords: Additive manufacturing; Post-processing; Aerospace