PRODUCTIVITY INCREASE OF HIGH PRECISION MICRO-MILLING BY TRAJECTORY OPTIMIZATION

Abstract

Milling parts for watch, medical, aircraft or molds industries is a compromise between time and precision or surface quality. The latter is very often related to machine vibrations during the process. This paper summarizes results obtained with two approaches aiming at reducing machine vibrations caused by axes accelerations. Both are control model based, taking into account the machine's modal behavior. The first algorithm optimizes the acceleration profile, while the second manages the axes cross-talk vibrations. A high-end 5-axis machine tool was used to mill 8 mm square pockets in brass with a 1 mm diameter tool and using a 0.05 mm depth of cut. Standard CNC parameters as well as vibration reduction options were evaluated. Then the two proposed algorithms were implemented on the same machine-tool using a laboratory Matlab based CNC. This paper describes the significant improvements provided by the algorithms when compared to a high end CNC. In the case of milling reference square pockets, up to 90% vibration amplitude reduction were achieved for a given feed rate, and a 5-fold decrease in the pockets machining time was obtained for the same surface quality.

Recommended articles

MACHINABILITY THE AISI 316 STAINLESS STEEL AFTER PROCESSING BY VARIOUS METHODS OF 3D PRINTING

p. mASEK, T. Fornusek, P. Zeman, M. Bucko, J. Smolik, P. Heinrich
Keywords: Hybrid manufacturing; Machining; Machinability; Stainless steel

METHODOLOGY FOR A MODEL-BASED CONTROL OF THE BOUNDARY ZONE PROPERTIES DURING MILLING OF TI-6AL-4V

M. Wimmer, P. Rinck, R. Kleinwort, M. F. Zäh
Keywords: Milling; Boundary zone properties; Internal stress states; Titanium; sensor tool holder; In-process measurement

OPERATIONAL METHOD FOR IDENTIFICATION OF SPECIFIC CUTTING FORCE DURING MILLING

M. janota, P. Kolar, M. Sulitka
Keywords: Specific cutting force; Mechanistic approach; Chatter; Frequency response function

INVERSE MATERIAL MODEL PARAMETER IDENTIFICATION FOR METAL CUTTING SIMULATIONS BY OPTIMIZATION STRATEGIES

T. Bergs, M. Hardt, D. Schraknepper
Keywords: Johnson-Cook model; Simulation; Optimization; Inverse identification; Machining