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Abstract 

Today, an operator performs experiments to adaptively select grinding process parameters using 
observations, expert knowledge, and rules of thumb. Self-optimizing grinding machines cannot use 
operator observations and must therefore extract enough information out of the grinding process. In this 
study, a holistic sensor set-up as foundation for self-optimizing machines are presented exemplarily for 
cup wheel grinding machines. In-process detection of grinding burn, based on temperature and gas 
measurements, is tested and compared. Afterwards, the influence of input variables such as feed rate 
and cutting speed on grinding cost, grinding burn, and surface roughness are investigated. 
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1 INTRODUCTION 

Most often, grinding is one of the last of several 
manufacturing steps and non-optimized machines or 
workpiece quality defects lead to high productivity losses. 
Different approaches for the optimization of grinding 
processes exist. [Venkata Rao 2011] presented an 
overview of grinding optimization, using different models 
and optimization techniques. For example, [Choi 2007] 
showed the optimization of a grinding process by using a 
combination of empirical and physical models. This 
approach works well for situations where extensive training 
data is available or low model complexity is sufficient. 
However, this approach may fail or needs recalibration for 
situations outside the trained scope of the optimization, 
such as new workpiece, tool, and machine combinations.  

Another approach was taken by [Morgan 2007], where a 
combination of sensor data and rules is used to optimize 
the grinding process. The usage of sensor data is an 
advantage because it provides feedback to the optimization 
system. In this way, the optimization can react to the 
observed data. A disadvantage is that decisions based on 
rules restrict the flexibility of the system. Many rules are a 
result of compromises because the grinding operation is too 
complex to foresee every possible grinding situation, which 
leads to non-optimal processes. 

The ingredients for a self-optimizing grinding machine are 
sensors, model/algorithm and database. This is similar to 
the approach of today’s operators. The operators use 
knowledge from previous experiments, which are 
comparable to the database of self-optimizing machines, 
acoustic and olfactory observations which are comparable 
to sensors, and rules of thumb which represent simple 
models of specific aspects of the grinding process. 

Recently, a new approach for self-optimizing machines was 
tested for turning [Maier 2019a], [Maier 2019b]. It is 
composed of Bayesian optimization, a sequential design 
strategy [Shahriari 2016], combined with a stochastic 
Gaussian process model [Rasmussen 2006] for the 
autonomous process set-up in turning. The method allows 
for the optimization of new grinding tasks, such as new 
workpiece, tool and machine combinations, with only a very 
limited number of experiments. Fig. 1 shows a schematic 
concept for Bayesian optimization in grinding. Bayesian 
optimization allows to determine the relation of the input 
variables towards an output, where an objective, such as a 
cost or utility, is minimized or maximized. In general, the 
optimization objective includes various aspects such as 
production costs, energy supplied to the machine tool, and 
environmental impact. In this study, the objective was to 
minimize production costs, which mainly consist of 
machining time costs and tool wear costs. The optimization 
might be subject to constraints, such as input variables and 
quality constraints. Input variable constraints such as 
maximal or minimal feed rates are known a priori. They can 
easily be implemented in the optimization by specifying the 
optimization input domain accordingly. In grinding, quality 
constraints might be imposed by surface roughness and/or 
workpiece surface integrity requirements. Surface 
roughness and surface integrity are constraint properties of 
the workpiece, which must be modelled. Based on available 
cost and constraint value measurements, stochastic 
process models are used to predict cost and constraint 
values and corresponding uncertainties for each input 
variable combination. The predicted cost and constraint 
values are then used to decide where the next experiment 
shall be conducted. The Bayesian optimization algorithm 
trades off experiments with high predictive value 
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(exploitation) and high predicted uncertainties (exploration). 
This process is repeated until a given number of iterations 
or a convergence criterion is fulfilled. Mathematically, the 
algorithm optimizes problems of the following form, 

 

𝒙𝒐𝒑𝒕 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐶𝑇(𝒙)  𝑠. 𝑡. 𝒄(𝒙) < 𝒄𝒎𝒂𝒙 (1) 

 

where 𝒙𝒐𝒑𝒕 are the optimal input variables, x are the input 

variables, 𝐶𝑇 are the total production costs, and 𝒄 are 

constraint values constrained to the maximum allowed 
constraints 𝒄𝒎𝒂𝒙. 

 

 

Fig. 1: Schematic concept of Bayesian optimization in 
grinding. 

In this study, information extraction for the optimization of 
cup wheel grinding of tungsten carbide inserts is 
investigated exemplarily. The paper focuses on the 
dedicated combination of sensors for cost and constraint 
calculation as a first step for successive optimization. 
Results from gas and temperature sensor measurements 
for in-process grinding burn detection are presented and 
compared. The results are discussed in the context of a 
sensor fusion approach, comparing the system’s output 
with results from current literature, as well as the results 
currently obtained on the examined machines via purely 
operator knowledge-based process setups. 

2 SENSORS FOR COST AND CONSTRAINT 
MEASUREMENT 

For the use of new optimization techniques in grinding, such 
as proposed in Fig. 1, new sensors are needed. The sensor 
data must be able to measure the process adherence to 

cost and constraint values for each input variable 
combination. Fig. 2 summarizes some typical input 
variables, measured cost quantities, cost parameters, 
process parameter and workpiece quality constraints for 
calculation of cost and constraint values in cup wheel 
grinding of cutting inserts. Input variables are tuned to 
accomplish a predefined grinding task. In grinding, several 
input variables must be tuned, such as feed rate and cutting 
speed, but also the grinding and dressing wheel type might 
vary. Total production cost consists of measured quantities, 
such as dressing time, maximum dressing interval and 
grinding time, as well as cost parameters, such as machine 
hourly costs and costs of grinding wheel. The cost 
parameters are not measured during grinding - these 
parameters result from factory data capture. Cost 
parameters depend on the location of the production site, 
purchasing contracts and/or workload of machines. Some 
measured quantities such as the grinding time can be 
calculated in a straightforward manner. The grinding time 
depends directly on removed workpiece material and feed 
rate of the grinding operation. The maximum dressing 
interval may be determined by grinding burn 
measurements. The measured costs can also include 
replacement costs for utilities caused by grinding and 
dressing wheel wear. The inputs to the total costs and 
constraints are mainly determined by the grinding 
application and the desired granularity of the calculation. 
The cup wheel grinding process is mainly bound by 
workpiece quality constraints. Today, dimensional accuracy 
is controlled by the machine with an in-process 
measurement probe and a corrective feedback control loop. 
Workpiece surface roughness can be measured by tactile 
or optical measurement devices as shown by 
[Azarhoushang 2017] for optical surface roughness 
measurements in cup wheel grinding of inserts. One major 
challenge of the cup wheel grinding process is the detection 
of grinding burn, which causes severe damage of the 
workpiece. Grinding burn does not only limit the process, it 
also determines the maximum dressing interval. Grinding 
temperature strongly depends on the grinding kinematics 
[Malkin 2008]. Grinding burn of the final workpiece can be 
detected by optical inspection, nital etching [Mayer 1999], 
Barkhausen noise analysis [Karpuschewski 2011; 
Thanedar 2017], X-ray diffractometry [Sinha 2016], or by 
using a Hall probe [Teixeira 2019]. Instead of directly 
measuring cost quantities and quality constraint values, 
process parameters such as force, power, and temperature 
can be used to infer on these values. In an industrial 
environment, operators also detect grinding burn during 
operation indirectly by burn of grinding lubricant, which can 
be detected olfactorily. Tab. 1 summarizes industrial and 
lab sensors for process parameters in grinding and their 
applications. An extensive review for process monitoring in 
grinding is given by [Tönshoff 2002]. Several methods for 
grinding burn detection exist. Using temperature 
measurements of the grinding zone directly is very 
promising for grinding burn detection as it allows to directly 
measure the phenomenon itself, without having to revert to 
observations or inference. [Jermolajev 2014] show grinding 
burn detection of cylindrical grinding using grinding 
temperature measurements at the contact zone.  
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Fig. 2: Input variables, measure cost quantities, cost parameter, process parameter, and workpiece quality constraints of 

cup wheel grinding of inserts for calculation of cost and constraint values. 

 

Tab. 1: Sensors for process monitoring and their applications in grinding. 

 
 

To the authors knowledge, grinding burn in cup wheel 
grinding of inserts using temperature measurements has 
not been studied specifically. No study has been found 
using gas sensor measurements for burn detection in 
grinding. Grinding burn detection using gas sensors is very 
attractive because investment costs are low. 

Several studies investigated cup wheel grinding of inserts 
e.g. [Azarhoushang 2017] studied normal and tangential 
forces, surface roughness, and wheel loading, [Denkena 
2014] investigated wheel topography, maximum edge 
chipping, surface roughness, and grinding forces, 
[Denkena 2015] studied grinding wheel wear, surface 

roughness, and cutting edge chipping. These studies 
investigated specific cost and constraint values. A 
comprehensive sensor set-up for optimization is missing. In 
this study, a holistic measurement set-up is presented, 
which can be used as a foundation for self-optimizing cup 
wheel grinding machines. 

  

Reference Measured quantity Application 

[Tönshoff 1986] Force Grinding contact detection & force controlled grinding 

[Govekar 2002] Force Chatter detection  

[Morgan 2007] Power Spark-out time reduction  

[Inasaki 1991] Power Burn detection &  Grinding wheel life detection 

[Jermolajev 2014] Temperature Prediction of workpiece surface layer properties  

[Karpuschewski 2000] Acoustic emission Dressing monitoring  

[Lange 2016] Acoustic emission Detection of run-out error  

[Yang 2012] Acoustic emission Classification of sharp and dull grinding wheels 

[Yang 2014] Acoustic emission Grinding burn detection 
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3 METHODOLOGY 

3.1 Grinding operation 

Fig. 3 shows a picture of the used cup wheel grinding 
machine (Agathon DOM). The machine is equipped with a 
metal-bonded diamond grinding wheel (Tyrolit 
D46C100M717). The grinding wheel rotates in 
counterclockwise direction. The rotational speed and the 
diameter of the grinding wheel specify the cutting speed. 
The grinding wheel can be moved in X-direction, which is 
the direction of the feed rate during grinding. To ensure a 
uniform wear of the grinding wheel, the grinding wheel is 
oscillated during grinding along the Y-direction. The hard 
metal-bonded grinding wheel shows a limited self-
sharpening effect. Therefore, a dressing wheel (Tyrolit 89A 
240 J5 AV217) is used for conditioning. The workpiece is 
clamped using a clamping device, which can rotate the 
workpiece along the B axis. An initially quadratic insert 
(14.5 mm x 14.5 mm x 4.76 mm) made of tungsten carbide 
(Tribo S25, grain size 2.5 µm, HV30 1470) is ground on two 

opposite sides. On each side 2.25 mm of workpiece 
material is removed. Resulting in a final workpiece 
geometry of 10 mm x 14.5 mm x 4.76 mm.  The cooling 
lubricant Blasogrind HC 5 (from Blaser Swisslube) is used 
during grinding and conditioning at a constant flow rate. 

 

Fig. 3: Overview of cup wheel grinding machine. 

3.2 Cost calculation & grinding burn 

In a very simplified form, the costs to grind one insert can 
be calculated as follows, 

 

𝐶𝑇 = 𝐶𝑀

𝑠 ∙ 𝑎

𝑓
+

𝐶𝐷

𝑖𝑑
 

(2) 

 

where 𝐶𝑀 is the machine hourly costs, s is the number of 

ground sides per insert, 𝑎 is the removed material per side, 
𝑓 is the feed rate, 𝐶𝐷 is the dressing costs, and 𝑖𝑑 is the 

dressing interval. The dressing interval is the number of 
parts ground between two dressing cycles. Idle costs are 
neglected as their consideration would merely result in a 
shift of the curve by a constant value. The machine hourly 
costs are assumed to be 100 U/h and the dressing costs 
are assumed to be 0.6 U per dressing. The costs are 
specified in Swiss francs, but for generality, the cost unit is 
denoted in arbitrary units U. The machine hourly costs and 
the dressing costs can be interpreted as weighting factors 
for the total production costs. The cutting time can be 
directly calculated by the feed rate and the removed 

material per insert. The dressing interval is unknown a priori 
and must be measured experimentally. 

The maximum dressing interval is measured by grinding 
with a freshly dressed wheel until grinding burn occurs. In 
this study, grinding burn is inspected optically after grinding. 
Workpieces with grinding burn show a distinct black 
coloring of the final workpiece surface (see Fig. 4). This 
approach is a simple approach for burn detection, which is 
widely used in industry. The main disadvantages of the 
method are that it is a subjective measurement and grinding 
burn below the surface may not be detected. Other 
methods for grinding burn detection exist, as discussed in 
section 2. However, the disadvantage of nital etching is that 
it is a subjective measurement such as the optical 
inspection and the disadvantage of the more sophisticated 
Barkhausen noise measurements is that it needs calibration 
and referencing  [Karpuschewski 2011]. The simple 
inspection method is considered sufficient, as the aim of 
this study is to investigate a holistic sensor set-up for self-
optimizing grinding machines. In case of higher surface 
quality requirements, a more sophisticated method is 
recommended. 

 

Fig. 4: Optical detection of grinding burn. 

3.3 Temperature measurement 

The grinding temperature is measured at the contact zone 
between grinding wheel and workpiece by use of an optical 
measurement system (FOS Messtechnik). The optical 
measurement system consists of four evenly distributed 
fibers which are embedded in the grinding wheel with an 
orientation perpendicular to the abrasive layer surface. The 
temperature signal is processed on the rotating cup wheel 
and transmitted wirelessly to a receiver unit outside the 
grinding machine. The receiver unit is connected to a 
measurement computer, where the data is post-processed. 
Fig. 5 illustrates the temperature measurement setup. The 
measurement system has a measurement range between 
200 and 660°C. Note that the emissivity of the workpiece is 
not measured. Therefore, the temperature readings can 
only be considered as relative measurements. However, a 
relative measurement is sufficient in this study because the 
final objective is to determine a threshold temperature for 
grinding burn detection. 
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Fig. 5: Experimental setup of temperature measurement. 

3.4 Gas measurement 

The gas concentration is measured using a metal-oxide gas 
sensor (Sensirion SGP30). The sensor is able to detect 
total volatile organic compounds (TVOC) and can calculate 
a CO2 equivalent, which corresponds to the greenhouse 
gas emissions of the test gas. Originally, the sensor is 
designed for indoor air quality measurements. To protect 
the sensor from cooling lubricant, it is placed in a 3D-printed 
housing as shown in Fig. 6. The housing is placed vertically 
inside the grinding machine. A ventilator inside the housing 
is used to provide a steady circulation of the ambient 
process chamber gases. The gas enters the housing on the 
bottom and is guided through plates as fluid separators to 
the gas sensor. Afterwards, the gas leaves the housing 
through a U-shaped tube to protect the sensor from cooling 
fluid. 

 

Fig. 6: Experimental setup of a gas sensor. 

3.5 Surface roughness measurement 

The surface roughness of the ground workpiece is 
measured transversally to the grinding direction using a 
tactile measurement devise (Taylor Hobsen Form Talysurf 
Series 2) with a tip radius of the measurement probe of 
2 μm and a cut-off wavelength of λc = 0.8 mm. The 
measurement length is reduced to 3.5 mm, since the total 
length of the workpiece was only 4.76 mm. The roughness 
was measured on both ground sides of the insert and 
subsequently averaged. 

4 RESULTS 

4.1 In-process detection of grinding burn 

Fig. 7 shows a comparison of in-process grinding burn 
detection based on maximum temperature measurements 
and on maximum gas concentration measurements. The 
experiments where conducted for different cutting speeds, 
feed rates, and wheel wear states of the grinding wheel. 
The temperature sensor is able to distinguish grinding burn 
and no grinding burn with a 100 % success rate. No grinding 
burn was observed for maximum temperature readings 
below 585°C. All temperature readings above the threshold 
value showed grinding burn. For process optimization, the 
measured temperature can be used as a constraint value 
and the maximum allowed temperature is determined to be 
585°C (compare with equation (1)). 

The maximum gas concentrations are correlated with the 
maximum grinding temperatures. An increase in maximum 
temperature leads to an increase in maximum gas 
concentration. The sharp peak at high temperatures is 
caused by the measurement range of the temperature 
sensor, which is limited to 660°C. For the gas 
measurement, no clear threshold limit can be determined. 
A threshold limit of 2000 ppm detects all workpiece grinding 
burns but is a very conservative approach with respect to 
the grinding burn limit. A threshold of 6000 ppm is able to 
detect cases without wrongly classifying successful 
grinding operations as failures. A threshold limit of 
6000 ppm can be seen as a limit for very extreme cases. 
The gas sensor is a low cost alternative for grinding burn 
detection with reduced sensitivity. 

 

Fig. 7: Comparison between measured maximum gas 
concentration and maximum temperature for in-process 

detection of grinding burn. 

 

4.2 Grinding burn and surface roughness constraint 

Fig. 8 shows the influence of feed rate and cutting speed on 
grinding burn for grinding the first side of the test insert 
directly after dressing. Grinding burn is favored by high feed 
rates and high cutting speeds. In general, a higher uncut 
chip thickness reduces the specific grinding energy (energy 
required to remove a unit volume of material) [Rowe 2014]. 
According to [Malkin 2008] the uncut chip thickness is 
increased by increasing the feed rate but is reduced when 
the number of active grains is increased. However, an 
increase in feed rate simultaneously increases the number 
of active grains due to wheel flexibility [Rowe 2014]. 
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Therefore, the effect of feed rate on specific energy is 
unknown a priori. [Azarhoushang 2017] reports that an 
increase in feed rate leads to an increase of specific energy 
in cup wheel grinding of PCBN cutting inserts, which 
indicates that for their test setup the influence of increase 
of active grains was dominate. Despite the contrary effects 
of feed rate on the specific grinding energy, high feed rates 
lead to a higher material removal rate, which increases the 
power demand and total heat dissipation. Higher cutting 
speeds increase the specific energy due to a decrease in 
uncut chip thickness, which reduces the energy efficiency 
of the process, and results in higher temperatures [Rowe 
2014]. 

 

Fig. 8: Measured grinding burn limit of a freshly dressed 
cup wheel grinding process. 

Fig. 9 shows the workpiece surface roughness as a function 
of cutting speed and feed rates. An increase in cutting 
speed leads to a decrease in surface roughness of the 
workpiece. This is in line with the findings of [Azarhoushang 
2017]. For the feed rate no general trend can be observed. 

 

Fig. 9: Surface roughness of workpiece ground with a 
freshly dressed wheel for different feed rates and cutting 

speeds. 

4.3 Grinding cost 

Grinding costs are influenced by maximum dressing 
intervals. To measure the maximum dressing interval, a 
freshly dressed wheel is used for grinding until grinding 
burn occurred. The maximum number of ground inserts 
until grinding burn occurred is used for comparison, which 
can be seen in Fig. 10. After eight inserts, the experiment 
was stopped to avoid unnecessarily long experiments. An 
increase in cutting speed reduces the maximum number of 
ground inserts before exceeding the temperature limit 
drastically. An explanation for this effect is a decrease in the 
effectiveness of the self-sharpening effect at higher cutting 
speeds. An increase in feed rate leads to a reduced number 
of maximum ground inserts. For higher feed rate the 
temperature limit is reached sooner because the grinding 
operation is initially started at higher temperatures. 

 

Fig. 10: Maximum dressing interval until temperature 
exceeds maximum. 

Fig. 11 shows the grinding costs as a function of cutting 
speed and feed rate, calculated using equation (2). A higher 
cutting speed increases the grinding costs because higher 
cutting speeds result in shorter dressing intervals. The feed 
rate influences the grinding costs in two ways: On one 
hand, a higher feed rate reduces the grinding time, which 
leads to lower costs. On the other hand, high feed rates lead 
in general to shorter dressing cycles, which increases the 
dressing costs. These contrary effects determine the total 
costs. The lowest costs were achieved by grinding with low 
cutting speed and high feed rate. However, the surface 
roughness is high for low cutting speeds. Therefore, higher 
requirements of the final workpiece surface roughness 
result in optimal parameters with higher cutting speeds. For 
intermediate cutting speeds it is interesting to note that feed 
rates very close to the grinding burn limit lead to high costs. 
For these cases, the grinding operation should not be 
performed close to the grinding burn limit. 
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Fig. 11: Calculated costs using equation (2) as a function 
of feed rate and cutting speed. 

5 CONCLUSION 

In this study, a holistic approach for sensor-based 
information extraction for self-optimizing machines was 
investigated exemplarily for cup wheel grinding. Measuring 
production costs and quality constraints are essential for 
successive optimization. Grinding costs are influenced by 
different quantities, such as process time, dressing interval, 
dressing cost, and machine hourly costs. In this study’s 
setting, the cost is minimal for low cutting speeds and high 
feed rates. Quality constraints come from surface 
roughness and grinding burn. Grinding burn is observed for 
high feed rates and high cutting speed. Surface roughness 
is reduced for high cutting speeds. Considering surface 
roughness requirements, the optimal cutting speed might 
be increased. In-process detecting of grinding burn is of 
high importance, as it is both an optimization constraint as 
well as an influence on the costs of the grinding operation. 
The optical temperature measurement system, integrated 
in the grinding wheel, shows excellent accuracy and reliable 
measurements. The system was able to detect grinding 
burn with a 100 % success rate without false positives using 
a threshold temperature of 585°C. The gas sensor is a low 
cost alternative with a reduced sensitivity. 

A comprehensive sensor set-up was successfully 
demonstrated that can be used for constrained 
optimization. The sensor set-up is a foundation for self-
optimizing grinding machines. In future, the sensor set-up 
must be combined with optimization methods, such as 
Bayesian optimization, and a database.  

6 ACKNOWLEDGMENTS 

The project was funded by CTI number 25411. We thank T. 
Spiegelburg for the design and manufacturing of the gas 
sensor housing and S. Schmid for performing the surface 
roughness measurements. 

7 REFERENCES 

[Azarhoushang 2017] Azarhoushang, B., et al. Effects of 
grinding process parameters on the surface topography of 
PCBN cutting inserts. International Journal of Abrasive 
Technology, 2017, Vol.8, No.2, pp 121-132, ISSN 1752-
2641 

[Choi 2007] Choi, T. and Shin, Y. C. Generalized Intelligent 
Grinding Advisory System. International Journal of 
Production Research, 2007, Vol.45, No.8, pp 1899-1932, 
ISSN 0020-7543 

[Denkena 2015] Denkena, B., Grove, T. and Behrens, L. 
Significant influence factors on the grinding tool wear and 
cutting mechanisms during grinding of PCBN inserts. 
Production Engineering, 2015, Vol.9, No.2, pp 187-193, 
ISSN 1863-7353 

[Denkena 2014] Denkena, B., Köhler, J. and Ventura, C. 
Influence of grinding parameters on the quality of high 
content PCBN cutting inserts. Journal of Materials 
Processing Technology, 2014, Vol.214, No.2, pp 276-284, 
ISSN 0924-0136 

[Govekar 2002] Govekar, E., et al. A New Method for 
Chatter Detection in Grinding. CIRP Annals, 2002, Vol.51, 
No.1, pp 267-270, ISSN 0007-8506 

[Inasaki 1991] Inasaki, I. Monitoring and Optimization of 
Internal Grinding Process. CIRP Annals, 1991, Vol.40, 
No.1, pp 359-362, ISSN 0007-8506 

[Jermolajev 2014] Jermolajev, S. and Brinksmeier, E. A 
New Approach for the Prediction of Surface and Subsurface 
Properties after Grinding. Advanced Materials Research, 
2014, Vol.1018,  pp 189-196, ISSN 1662-8985 

[Karpuschewski 2011] Karpuschewski, B., Bleicher, O. and 
Beutner, M. Surface Integrity Inspection on Gears Using 
Barkhausen Noise Analysis. Procedia Engineering, 2011, 
Vol.19,  pp 162-171, ISSN 1877-7058 

[Karpuschewski 2000] Karpuschewski, B., Wehmeier, M. 
and Inasaki, I. Grinding Monitoring System Based on Power 
and Acoustic Emission Sensors. CIRP Annals, 2000, 
Vol.49, No.1, pp 235-240, ISSN 0007-8506 

[Lange 2016] Lange, D. and Scherer, W. (2016) Mess- und 
Überwachungssysteme beim Schleifen Schweizer Schleif-
Symposium. Schweizer Schleif-Symposium. Zürich. 

[Maier 2019a] Maier, M., et al. (2019a) Turning: 
Autonomous Process Set-up through Bayesian 
Optimization and Gaussian Process Models (in press). 
CIRP ICME 2019. 

[Maier 2019b] Maier, M., et al. Bayesian Optimization for 
Autonmous Process Set-up in Turning (in press). CIRP 
Journal of Manufacturing Science and Technology, 2019b,  
pp, ISSN  

[Malkin 2008] Malkin, S. and Guo, C. Grinding technology : 
theory and application of machining with abrasives. New 
York : Industrial Press, 2008. 

[Mayer 1999] Mayer, J. E., Purushothaman, G. and 
Gopalakrishnan, S. Model of Grinding Thermal Damage for 
Precision Gear Materials. CIRP Annals, 1999, Vol.48, No.1, 
pp 251-254, ISSN 0007-8506 

[Morgan 2007] Morgan, M. N., et al. Design and 
implementation of an intelligent grinding assistant system. 
International Journal of Abrasive Technology, 2007, Vol.1, 
No.1, pp 106-135, ISSN 1752-2641 

[Rasmussen 2006] Rasmussen, C. E. Gaussian processes 
for machine learning. Cambridge, Mass: Cambridge, Mass 
: MIT Press, 2006. 

[Rowe 2014] Rowe, W. B. Principles of modern grinding 
technology. Waltham, MA : William Andrew, 2014. 



 

MM Science Journal | 2019 | Special Issue on HSM2019 

3199 

[Shahriari 2016] Shahriari, B., et al. Taking the Human Out 
of the Loop: A Review of Bayesian Optimization. 
Proceedings of the IEEE, 2016, Vol.104, No.1, pp 148-175, 
ISSN 0018-9219 

[Sinha 2016] Sinha, M. K., et al. An investigation on surface 
burn during grinding of Inconel 718. Journal of 
Manufacturing Processes, 2016, Vol.21,  pp 124-133, ISSN 
1526-6125 

[Teixeira 2019] Teixeira, P. H. O., et al. Application of Hall 
effect for assessing grinding thermal damage. Journal of 
Materials Processing Technology, 2019, Vol.270,  pp 356-
364, ISSN 0924-0136 

[Thanedar 2017] Thanedar, A., et al. Surface integrity 
investigation including grinding burns using barkhausen 
noise (BNA). Journal of Manufacturing Processes, 2017, 
Vol.30,  pp 226-240, ISSN 1526-6125 

[Tönshoff 2002] Tönshoff, H., Friemuth, T. and Becker, J. 
C. Process monitoring in grinding. CIRP Annals-
Manufacturing Technology, 2002, Vol.51, No.2, pp 551-
571, ISSN 0007-8506 

[Tönshoff 1986] Tönshoff, H. K., Zinngrebe, M. and 
Kemmerling, M. Optimization of Internal Grinding by 
Microcomputer-Based Force Control. CIRP Annals, 1986, 
Vol.35, No.1, pp 293-296, ISSN 0007-8506 

[Venkata Rao 2011] Venkata Rao, R. Modeling and 
Optimization of Machining Processes. In: Advanced 
Modeling and Optimization of Manufacturing Processes: 
International Research and Development  London: 
Springer London, 2011. 

[Yang 2012] Yang, Z. and Yu, Z. Grinding wheel wear 
monitoring based on wavelet analysis and support vector 
machine. The International Journal of Advanced 
Manufacturing Technology, 2012, Vol.62, No.1, pp 107-
121, ISSN 1433-3015 

[Yang 2014] Yang, Z., et al. Application of Hilbert–Huang 
Transform to acoustic emission signal for burn feature 
extraction in surface grinding process. Measurement, 2014, 
Vol.47,  pp 14-21, ISSN 0263-2241 

 


