STRATEGY OF MILLING CENTER THERMAL ERROR COMPENSATION USING A TRANSFER FUNCTION MODEL AND ITS VALIDATION OUTSIDE OF CALIBRATION RANGE

  • 1Czech Technical University in Prague, Research center of Manufacturing Technology, Prague, CZ
  • 2Doosan Machine Tools, Seoungsan-gu, Changwon-si, Gyeongsangnam-do, KR

Abstract

Achieving high workpiece accuracy is a long-term goal of machine tool designers. There are many causes of workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising strategy to reduce thermal errors without increasing machine tool costs. A modeling approach using thermal transfer functions (a dynamic method with a physical basis) has the potential to deal with the issue. The method does not require any intervention into the machine tool structure and its modeling and calculation speed are suitable for real-time applications with results of up to 80% thermal error reduction. Compensation models for machine tool thermal errors based on transfer functions (TFs) were successfully applied on various kinds of single-purpose machines (milling, turning, floor-type, etc.) and implemented directly into various control systems. The aim of this research is to prove the compensation model applicability within the real machining conditions whereas most of the known thermal error models end up with offline verification of their approximation quality. The introduced model of a milling center operates in two machining directions Y and Z and describes thermal errors caused by spindle speed, feed drives, and ambient temperature influences. The model is implemented into a machine tool control system (Fanuc FS31i-B5). The real-time verification upon finishing cutting operation and conditions different from model calibration is discussed in more detail.

Recommended articles

A GENERALIZED FORCE AND CHIP FLOW MODEL FOR OBLIQUE CUTTING AND VARYING UNDEFORMED CHIP CROSSSECTIONS

L. Meier, L. Seeholzer, K. Wegener
Keywords: Cutting forces; Restricted chip motion; Turning; Drilling

INVERSE MATERIAL MODEL PARAMETER IDENTIFICATION FOR METAL CUTTING SIMULATIONS BY OPTIMIZATION STRATEGIES

T. Bergs, M. Hardt, D. Schraknepper
Keywords: Johnson-Cook model; Simulation; Optimization; Inverse identification; Machining

ADAPTIVE TOOLPATH FOR 3-AXIS MILLING OF THIN WALLED PARTS

N. Grossi, A. Scippa, L. Croppi, L. Morelli, G. Campatelli
Keywords: Toolpath; Milling; Thin-wall workpiece

FINISH MILLING STUDY OF Ti-6Al-4V PRODUCED BY LASER METAL DEPOSITION (LMD)

A. Kallel, A. Duchosal, G. Altmeyer, A. Morandeau, H. Hamdi, R. Leroy, S. Méo
Keywords: Laser Metal Deposition (LMD); Milling; Ti-6Al-4V; Heat treatment; Surface integrity