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Abstract 

An active method for boring bar vibration attenuation and chatter suppression is presented through the 
introduction of a nonlinear control force within a tuned mass damper. Its effects on process stability and 
its control options are discussed in detail. The effectiveness of the active damping system and the optimal 
control parameters are determined through numerical simulations carried out on a simplified linearized 
mechatronic model of the coupled nonlinear manufacturing system. 
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1 INTRODUCTION 

The boring machining process is highly restricted due to 
stability boundaries in connection with the geometry of the 
bores and the dynamical properties of the machine tool. 
The production of long, slim bores is most difficult since it 
requires a slender boring bar with highly inconvenient 
mechanical properties. Due to small machine tool stiffness, 
the appearance of regenerative chatter is a common 
difficulty, causing poor surface finish and extensive tool 
wear. The biggest and most important engineering 
challenge of boring is to extend the limit of the chatter-free 
tool length to diameter (L/D) ratio, therefore expanding the 

spectrum of achievable bore geometries. 

Major efforts have been made already in the field of 
machine tool vibration attenuation and chatter suppression. 
There are several active and passive methods available, 
discussed in further detail in the works of Munoa et al. 
[Munoa 2016]. In the case of the boring, passive vibration 
attenuation methods often fall short in the face of increasing 
industrial needs and requirements.  

In order to expand the chatter-free L/D ratio above the 
passively achievable limit, several different active damping 
techniques have been developed. Such as the ones 
mentioned in the works of Åkesson et al. [Åkesson 2006] 
and Mei et al. [Mei 2005]. Most of these solutions using 
some sort of feedback control based on position, velocity or 
chatter frequency, and a force actuator either magnetic, 
piezoelectric or hydraulic. 

As presented in the works of Tanaka et al. [Tanaka 1994] 
and Redmond et al. [Remond 1999], piezoelectricity is an 
efficient approach for active boring bar vibration 
attenuation, through the generation of internal bending 
moments. They propose chatter frequency and 
displacement, velocity, acceleration based control 
strategies to provide the necessary active damping. In the 

former study the optimal position of the actuator is also 
determined. 

Piezoelectric actuators can also be used for active error 
correction in high precision boring. Such a method is 
presented by Chiu et al. [Chiu 1997] via a PC controlled 
active piezoelectric tool holder. Actuation is done based on 
displacement measured trough strain gauges and a PID 
control loop. 

Magnetic actuators can also be used for active vibration 
attenuation. Either through external non-contact clamping 
[Chen 2014], or via an internal actuated inertial mass [Abele 
2016]. Both studies suggest the use of at counteracting 
pairs of current controlled electromagnets, and the use of 
permanent magnets to amplify actuation forces. As 
feedback variable, relative displacement is used and with 
Abele et al. [Abele 2016] it is aided by acceleration data. 
Both of these can be easily measured with fiber optics, and 
piezo accelerometers. 

Another approach to boring bar vibration attenuation is the 
use of passive, semi active or active tuned mass dampers 
(TMD’s). This topic is further discussed in [Munoa 2015], 
where the effect of TMD’s – with passive Den Hartog [Den 
Hartog 1934] and Sims [Sims 2007] tuning, and semi active 
self-tuning – on the stability of a milling process is 
investigated. Regarding to the robustness of the process 
and the achievable material removal rates, it states, that the 
use of TMD’s is beneficial overall, and the use of an active 
damping system can improve the machining process even 
further. In accordance with these results, the introducing of 
an actively controlled and actuated TMD to the boring 
process proposes favorable results. 

In this current paper a novel method for active vibration 
attenuation is presented through the introduction of a 
nonlinear control force in the applied tuned mass damper. 
The proposed method as seen in Fig. 1, is an active 
vibration attenuation system with a broad range of control 
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options. Given the right control strategy this approach can 
greatly improve the quality and the productivity of the boring 
machining process, and can help increase the limit of 
chatter free operable boring bar L/D ratio.  

The study aims to propose an active control method for 
slender boring bars with L/D ratio of 7-8, with the focus on 
providing a generic control strategy independent of physical 
realization. Thus in all calculations arbitrarily chosen 
sample data was used, and the method should be 
applicable to a wide range of boring bar sizes. 

 

Fig. 1: Nonlinear active damper. 

The introduction of the nonlinear control force despite 
providing active control options also causes the machining 
system to become unstable on its own. Consequently 
finding the optimal control parameters for stable operation 
is of the outmost importance. 

In order to achieve the above described feat an adequately 
accurate model of the system must be created. First the 
nonlinear force characteristics should be investigated 
trough linearization, then it should be combined with the 
regenerative force model of the orthogonal cutting process. 
Accomplishing that, the resulting mathematical model was 
a highly complex system of nonlinear delayed differential 
equations, therefore in order to perform further tests, 
simplifications and linearization were needed. 

With the help of the linearized model of the machining 
system, the ideal control strategy was determined. Taking 
the measurability and controllability of the state variables 
into account, a PDA12 voltage control was introduced, 
since the control force was assumed to be actuator voltage 
dependent. As feedback, relative positions and velocities, 
and absolute accelerations - of the damper and the tool -
were used. Acceleration was chosen as a control variable 
with the intent of introducing virtual masses to the system, 
therefore battling the most significant limiting factor of 
TMD’s, the maximal achievable weight ratio. 

The stable control parameters were determined using a 
stability analysis based on a Linear Multistep Method (LMS, 
[Engelborghs 2002]) on the linearized form of the 
mechatronic model. Then the performance of the active 
damping system was compared to its ideally tuned passive 
counterparts. 

2 MODELLING 

The presented mechanical model was greatly simplified, 
excluding continuum mechanical problems, with replacing 
the entirety of the boring bar with a concentrated mass a 
spring and a damping, at the point of cutting. 

For modelling the effects of cutting, a linear force model 
was used, thus providing a conveniently simple 

mathematical representation, and an analytical solution to 
compare the results to. 

2.1 Control force 

The aim of this current study was to enhance the 
performance of passive boring bar vibration attenuation 
systems with the introduction of a nonlinear control force. 
Such nonlinear force characteristics are often present in 
active systems, due to the inclusion of force actuators, such 
as magnetic, piezoelectric and hydraulic actuators. 

For the nonlinear control force, the following arbitrary 
characteristics was chosen: 

𝐹nl = 𝐾 (
𝑈1
2

(𝑎−𝑥)𝑛
−

𝑈2
2

(𝑎+𝑥)𝑛
). (1) 

This formula represents the combined effect of two 
actuators, where the actuating force is proportional to the 
square of the applied voltage, and is in inverse relationship 
with the nth power of the position of the actuated mass x. K 
represents a force coefficient, U1 and U2 denotes the 
applied actuator voltages, and a is the equilibrium distance, 

where given the same excitation the effect of the actuators 
cancel each other out. 

This resultant force is highly nonlinear, and it diverges to 
infinity as the actuated mass collides into the actuator. It 
also makes the equilibrium at x=0, unstable since here its 
derivative by x is always positive. All these mentioned 
above are rather inconvenient properties, thus without a 
proper control strategy, the introduction of the nonlinear 
control force is actually harmful for the operation of the 
boring process. 

2.2 Nonlinear active damper 

Designing a nonlinear active damper requires a sufficiently 
accurate yet simple model of the coupled machining 
system. Such a model can be constructed by adding a 
position dependent force source representing the 
nonlinaear actuators to the passive vibration damper, as 
seen in Fig. 2. The actuated force Fnl, can be calculated 
here using the formula seen in equation (2). In Fig. 2. m1, k1 
and b1 represent the modal mass, stiffness and damping of 
the machine tool, while m2, k2 and b2 denote the mass, 
stiffness and damping of the TMD. The PC represents the 
control system which uses the positions, velocities and 
accelerations of the machine tool and TMD: x1, x2 and their 
derivatives as feedback variables, to provide the necessary 
voltages U1 and U2 for the included actuator. The working 

principles of the control system and the measurement of 
feedback variables is discussed in further detail in section 
3. 

 

Fig. 2: Modelling of active dampers considering feasible 
sensor types and positions. 
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𝐹nl = 𝐾 (
𝑈1
2

(𝑎−𝑥2+𝑥1)
2 −

𝑈2
2

(𝑎−𝑥2+𝑥1)
2). (2) 

For further analysis and control design the linearization of 
the active control force is needed. It can be done around 
the x1=x2=0 equilibrium, assuming that U1=U2 and the 
springs are tensionless in this state (3). 

𝐹nl ≈ 𝐹nl,0 +
𝜕𝐹nl

𝜕𝑥1
|
𝑥1,2=0

𝑥1 +
𝜕𝐹nl

𝜕𝑥2
|
𝑥1,2=0

𝑥2 = −𝛹𝑥1 +𝛹𝑥2.(3) 

Where Ψ is a positive constant: 

𝛹:=
𝐾𝑛

𝑎𝑛+1
(𝑈1

2 + 𝑈2
2). (4) 

Using equation (2) a linearized equation of motion can be 
formulated for the simplified two degree of freedom active 
damper system (5). 

𝐌 �̈� + 𝐂 �̇� + 𝐊 𝐱 = 𝟎, (5) 

where: 

𝐌 = (
𝑚1 0
0 𝑚2

),  (6.1) 

𝐂 = (
𝑏1 + 𝑏2 −𝑏2
−𝑏2 𝑏2

),  (6.2) 

𝐊 = (
𝑘1 + 𝑘2 −𝛹 𝛹 − 𝑘2
𝛹 − 𝑘2 𝑘2 −𝛹

).  (6.3) 

From equation (6.3) it is visible, that if Ψ is greater than k2, 
meaning the nonlinear active forces overpower the spring 
forces, the stiffness matrix loses its positive definiteness, 
thus causing the solution of the equations to become 
unstable. 

2.3 Cutting process 

Since the main focus of this current study was active 
damping system development not boring bar design, all 
problems related to the tool geometry were disregarded. 
Through the modelling process, the boring bar was 
replaced with a concentrated mass, a spring and a viscose 
damping. These components are meant to model the 
bending dynamics of the boring bar at the point of cutting. 
The simplified representation of a turning process executed 
by an active TMD assisted boring bar can be seen in Fig. 3.  

 

Fig. 3: Simplified boring bar model. 

Here the notations are the same as on Fig. 2., with the 
addition of h0: desired depth of cut, h: actual depth of cut, Ft 
and Fr: tangential and radial cutting force, w: feed rate and 
Ω: spindle speed. 

In order to keep the mathematical model of the system as 
simple as possible, a linear regenerative force model [Marui 
1988] was used to represent the effects of the turning 
operation. Since the inclusion of the damper in the boring 
bar is meant to attenuate bending vibrations, it is enough to 
describe the behavior of the system only along one 
dimension with 2 DOF. Thus only the x directional 
component of the cutting force was taken into account, 
which can be calculated using equation (7). 

𝐹𝐶𝑥(𝑡) = 𝜒𝑤(𝐾e𝑡 +𝐾c𝑡(ℎ0 + 𝑥1(𝑡 − 𝜏) − 𝑥1(𝑡))). (7) 

Where χ, Ket and Kct are empirical force constants that can 
be obtained from orthogonal cutting tests. w denotes the 
feed rate, h0 the desired depth of cut and x1 the position of 
the cutting edge. This force model takes the regenerative 
nature of the process into account, introducing a delayed 
component into the mathematical description of the system, 
representing the trace the cutting edge left on the workpiece 
throughout its previous revolution. Consequently the 
introduced time delay is equal to the period of one rotation, 
and can be calculated from the angular velocity (a.k.a. 
spindle speed, Ω) used for the cutting process (8). 

𝜏 =
2𝜋

Ω
. (8) 

Incorporating the effects of the cutting force into the 
previously defined mathematical model of the 2DOF 
nonlinear active damper (5), the equation of motion 
describing the attenuated boring process can be derived. 
Since a linear cutting force model was used, and the 
constant parts of the cutting force can be cancelled out by 
spring preload, which will have no significant effect on the 
dynamic behavior, no further linearization is needed. Thus 
the following linear equation of motion was derived: 

𝐌 �̈�(𝑡) + 𝐂 �̇�(𝑡) + (𝐊 + 𝐅C)𝐱(𝑡) = 𝐅Cτ𝐱(𝑡 − 𝜏). (9) 

Where: 

𝐅C = 𝐅Cτ = (
𝜒𝑤𝐾𝑐𝑡 0
0 0

). (10) 

3 CONTROL DESIGN 

As it has been shown previously, the introduction of the 
nonlinear control force is indeed harmful without proper 
control. Thus the development of a viable control strategy 
is of the outmost importance. 

At first the measurability and controllability of the state 
variables was investigated. Direct voltage control was used, 
since the nonlinear force was assumed to be voltage 
dependent, as seen in the formula in equation (1). This 
current study does not go into detail regarding the in 
practice execution of the voltage regulation, and assumes 
instantaneous and arbitrary changes can be executed by 
the power electronics. 

Relative position, relative velocity and absolute 
acceleration were chosen as feedback variables, due to 
measurability. Accelerations can be easily evaluated 
individually via piezoelectric sensors, distance between the 
damper mass and the boring bar can be measured using 
laser displacement sensors, and for the relative velocity 
laser surface velocimetry is a viable option. However, it is 
rather difficult to measure velocity or displacement 
individually for both bodies. 
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Considering all of the above a PDA12 voltage control was 
chosen. In the presence of this control strategy, the 
nonlinear actuator voltages can be calculated as seen in 
equation (11). 

𝑈1 = 𝑈10 − 𝑃(𝑥2 − 𝑥1) − 𝐷(�̇�2 − �̇�1) + 𝐴1�̈�1 − 𝐴2�̈�2, (11.1) 

𝑈2 = 𝑈20 + 𝑃(𝑥2 − 𝑥1) + 𝐷(�̇�2 − �̇�1) − 𝐴1�̈�1 + 𝐴2�̈�2. (11.2) 

Since as seen in equation (1) the active nonlinear force and 
the applied voltages are in quadratic relation, the repetition 
of the linearization step seen in equation (3) is necessary. 
However this time the control force will also depend on the 
acceleration and velocity values of the masses. If we 
assume that in equilibrium U10=U20=U0, than the 
linearization will yield the following formula: 

𝐹𝑚 ≈ 𝐹𝑚0 +
𝜕𝐹𝑚

𝜕𝑥1
|𝑥1,2=0
�̇�1,2=0

�̈�1,2=0

𝑥1 +
𝜕𝐹𝑚

𝜕𝑥2
|𝑥1,2=0
�̇�1,2=0

�̈�1,2=0

𝑥2 +
𝜕𝐹𝑚

𝜕�̇�1
|𝑥1,2=0
�̇�1,2=0

�̈�1,2=0

�̇�1 +

𝜕𝐹𝑚

𝜕�̇�2
|𝑥1,2=0
�̇�1,2=0

�̈�1,2=0

�̇�2 +
𝜕𝐹𝑚

𝜕�̈�1
|𝑥1,2=0
�̇�1,2=0

�̈�1,2=0

�̈�1 +
𝜕𝐹𝑚

𝜕�̈�2
|𝑥1,2=0
�̇�1,2=0

�̈�1,2=0

�̈�2 = (𝑃Γ − Ψ)x1 −

(𝑃Γ −Ψ)x2 + 𝐷𝛤�̇�1 − 𝐷Γ�̇�2 + 𝐴1Γẍ1 − 𝐴2Γẍ2, (12) 

where Ψ and Γ are positive constants: 

𝛹:=
2𝐾𝑛

𝑎𝑛+1
𝑈0
2, (13.1) 

Γ:=
4𝐾

𝑎𝑛+1
𝑈0. (13.2) 

Using the new linearized form of the active nonlinear force, 
the linear equation of motion for the actively controlled 
vibration attenuation supported boring process can be 
derived (14). 

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + (𝐊 + 𝐅C)𝐱(𝑡) = 𝐅Cτ𝐱(𝑡 − 𝜏). (14) 

Where: 

𝐌 = (
𝑚1 + 𝐴1Γ −𝐴2Γ
−𝐴1Γ 𝑚2 + 𝐴2Γ

),  (15.1) 

𝐂 = (
𝑏1 + 𝑏2 + 𝐷Γ −𝑏2 − 𝐷Γ
−𝑏2 − 𝐷Γ 𝑏2 + 𝐷Γ

),  (15.2) 

𝐊 = (
𝑘1 + 𝑘2 −𝛹 + 𝑃Γ 𝛹 − 𝑘2 − 𝑃Γ
𝛹 − 𝑘2 − 𝑃Γ 𝑘2 −𝛹 − 𝑃Γ

).  (15.3) 

4 SIMULATIONS 

With the help of the created simplified machining model of 
the actively controlled vibration attenuated boring process, 
numerical tests can be carried out to compare the 
effectiveness of the novel active damper, to its already in 
practice passive counterparts. 

Since the equation of motion derived in equation (14) is a 
delay differential equation, in general sense no analytical 
solution can be found, and a numerical method must be 
chosen for its examination. In this current study the Adams-
Bashford linear approximation formula, a version of Linear 
Multistep (LMS) methods was used [Engelborghs 2002].  

To apply an LMS method, the equation of motion seen in 
(14) must be rewritten in the generic form of a first order 
DDE (16). 

�̇�(𝑡) = 𝐋 𝐲(𝑡) + 𝐑 𝐲(𝑡 − 𝜏), (16) 

where: 

𝐲 = (𝑥1 𝑥2 �̇�1 �̇�2)
⊺
, (17.1) 

𝐋 = (
𝟎 𝐈

−𝐌−1(𝐊 + 𝐅C) −𝐌−1𝐂
),  (17.2) 

𝐑 = (
𝟎 𝟎

−𝐌−1𝐅Rτ 𝟎
). (17.3) 

Applying the Adams-Bashford method [Engelborghs 2002] 
to equation (16) results in the following linear algebraic 
forward stepping formula capable of approximating the 
solution of the delay differential equation: 

𝐲𝑠+𝑘 = 𝐲𝑠+𝑘−1 + ℎ∑ 𝛽𝑗(𝐋𝐲𝑠+𝑗 + 𝐑𝐲𝑠+𝑗−𝑁)
𝑘−1
𝑗=0 . (18) 

In equation (18) h is the time step used for the 
approximation, which was chosen so h=τ/N, thus no 

interpolation is needed upon enumerating the delayed term. 
The βj approximation constants can be calculated using the 
following formula [Iserles 1996]: 

𝛽𝑗 =
(−1)𝑗

𝑗!(𝑘−𝑗−1)!
∫ ∏ (𝑢 + 𝑖)𝑑𝑢𝑘−1

𝑖=0
𝑖≠𝑗

1

0
, j = 0,… , k − 1. (19) 

With the help of the LMS method, the stability of the solution 
of the original linear equation of motion (14), can be easily 
investigated by formulating a linear operation zs+1=Szs from 

equation (18). This linear operation can be represented by 
a stepmatrix seen in the following equation: 

𝐒 ∈ ℝ(𝑁+𝑘)×(𝑁+𝑘) = 

(

 
 

−𝐈 + ℎ ∗ 𝛽𝑘−1𝐋 ℎ𝛽𝑘−2𝐋 ⋯ ℎ𝛽0𝐋 𝟎 … 𝟎 ℎ𝛽𝑘−1𝐑 … ℎ𝛽0𝐑
𝐈 𝟎 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝟎
𝟎 𝐈 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝟎 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝐈 𝟎 )

 
 

. 

(20) 

Through the eigenvalues of the stepmatrix S seen in 

equation (20), the stability of the linear operation along with 
the stability of the original delayed differential equation 
system can be investigated. If all eigenvalues have an 
absolute value less than 1, than the solution of the equation 
of the motion and therefore the boring process will remain 
stable. 

It is clear, that the LMS method is capable of determining 
the stability of the DDE describing the active controlled 
boring process, however before carrying out actual 
numerical simulations its accuracy must be tested. A simple 
one degree of freedom turning process is ideal for this 
application since it has an analytical solution to which the 
numerical results can be compared to. Such a comparison 
can be seen in Fig. 4. 

 

Fig. 4: Analytical and numerical solution comparison. 

As seen on the w-Ω stability maps on Fig. 4, the LMS 
numerical method provides a valid approach for estimating 
stability maps of turning operations. Furthermore its 
accuracy, convergence and correlation with the original 
DDE is proven by Engelborghs et al. in their corresponding 
research [Engelborghs 2002]. 

It is worth mentioning, that the accuracy of the Adams-
Bashforth method is highly dependent on the time step 
used. This is especially problematic upon investigating the 
stability of milling processes on low spindle speeds. As the 
angular velocity of the part decreases, the time delay τ 
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increases, and in order to keep the used time step h on a 
sufficiently small value, the step matrix dimension N has to 
be increased. However this leads to a significant increase 
in the required computational power. In order to keep 
computing needs low, the simulations carried out were 
focused on higher angular velocity levels.  

5 RESULTS 

The goal of this current study was to develop an active 
control system for boring bars, which can improve the 
efficiency and productivity of the machining process. In 
order to do so, during the simulations, the nonlinear control 
force was added to an already ideally tuned passive 
damper, to see whether their inclusion can yield any 
benefits. 

Since the goal was to create a generic control strategy 
independent of physical realization, throughout the testing 
and tuning of the active control, plausible example data was 
used to carry out the numeric simulations. The parameters 
of the applied passive damper were tuned according to 
Sims’ formulas [Sims 2007]. All these above mentioned 
data can be found in Tab 1. 

Tab. 1: Example data. 

sgn. description value unit 

m1 Weight of machine tool 1 kg 

k1 Stiffness of machine tool 5e5 N/m 

b1 Damping of machine tool 10 Ns/m 

m2 Damper mass 0.05 kg 

k2 Damper stiffness 2.69e4 N/m 

b2 Damper damping 9.45 Ns/m 

Kct Cutting edge coefficient 2e9 Pa 

χ Force ratio 0.3 1 

n Nonlinear exponent 2 1 

a Equilibrium distance 5 mm 

K Force coefficient 7.88e-10 
Nm2/

V2 

U0 Equilibrium voltage 20 V 

In order to improve the effectiveness of the boring process 
with the inclusion of active control, first the initial 
performance of the passive damper system must be 
examined. The cutting speed – feed rate stability maps of 
the boring process in the presence of ideally tuned passive 
dampers can be seen in Fig. 5 In this application Sims 
tuning is more favourable compared to the Den Hartog one 
[Den Hartog 1934], since the minimum of the lobes is 
higher, and it provides safer operation in the whole cutting 
speed scale.  

 

Fig. 5: Boring stability map in presence of passive 
dampers. 

Consequently the goal of control strategy development was 
to find control parameters capable of expanding the Sims 
w-Ω stability map. Thus as seen in Fig. 5, a passively 
unstable parameter combination was chosen as the focus 
of further simulations, since if this feed rate – cutting speed 
combination can be operated safely with the help of active 
control, then the introduction of the nonlinear control force 
will prove itself beneficial. 

5.1 PD approach 

Given the example data seen in Tab. 1, without active 
control, the introduction of the nonlinear control force 
causes the system to become initially unstable, even 
without taking the regenerative effects of cutting into 
account. However this effect can be counterbalanced using 
simple PD voltage control on the actuators. 

For successful active control adequate PD parameters 
must be found, in presence of which, the boring process 
remains stable. Since the goal was to improve the passive 
vibration attenuation strategy, the unstable w-Ω 
combination shown on Fig. 6 was used throughout the 
search of control parameters. 

The result of this search can be seen on the P-D stability 
map seen on Fig. 6. Here it is clear that stable parameters 
can be found for one passively unstable point of operation. 
however for testing the efficiency of the active control the 
whole w-Ω map must be examined in its presence. An 
arbitrarily chosen example PD combination was selected 
and tested in this manner, resulting in Fig 8. From this graph 
it is visible, that previously unstable feed rate – cutting 
speed combinations become stable thanks to the active 
enhancement, and higher material removal rates become 
available. 

In the presence of the active control, the minimum of the 
lobes decreased, and examining the whole cutting speed 
scale, the cutting process became less robust. The control 
parameters however can be tuned in accordance with the 
used spindle speed, thus dismissing this drawback. 

 

Fig. 6: Stable PD control parameters. 

5.2 PDA12 approach 

The previously discussed active PD control can be further 
improved with the application the of the A1 and A2 
parameters into the control loop. Thus adequate A12 
parameters must be found for the previously selected stable 
PD parameters. The result of this search can be seen in 
Fig. 7. The search was yet again carried out in the w-Ω 
combination seen on Fig. 5 and with the PD parameters 
seen on Fig. 6. 
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Fig. 7: Stable A12 control parameters. 

As in the case of PD control development one stable point 
of operation is not sufficient. Yet again an arbitrarily chosen 
A1-A2 combination was selected and tested on the whole 
w-Ω stability map. Its results can be seen on Fig. 8. Here it 
is clear, that due to the introduction of the A12 parameters, 
the effect of the active enhancement became even more 
significant. The minimums of the lobes dropped even lower, 
and the maximum of the first lobe was perfectly aligned with 
the w-Ω combination chosen on Fig 5.  

Thus it is proven, that with the help of PDA12 control and 
the introduction of virtual masses, the lobes on the stability 
map can be moved in accordance with the used spindle 
speed, and the material removal can always be done in a 
“sweet spot”, with high stability and material removal rate. 

 

Fig. 8: The effect of PD and PDA12 control on the boring 
process. 

6 SUMMARY 

A novel method for boring bar vibration attenuation was 
presented and analyzed. A simplified linearized model of 
the cutting and nonlinear force system was formulated.  

With the help of this created model, an ideal control strategy 
was developed for the applied nonlinear control force, and 
its effectiveness was tested through numerical simulations 
carried out via Linear Multistep method. 

It was found that given the right control strategy, and the 
appropriate control parameters, the active enhancement of 
the damper applied onto the boring bar yields favorable 
results, and can significantly improve the stability, 
effectiveness and productivity of the machining process. 
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EDITOR’S NOTICE: The paper does not present a full 

description of the actual realization the active boring bar. 
This was requested by reviewers during the review process. 
Authors are not allowed to present the detailed realization 
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of the force actuation due to competitive legal protection. 
Thus, simplified model is used only. Since the paper    

presents valuable control strategy of the nonlinear active 
damper, the paper was accepted in this final version. 

 


