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This paper performs a benchmark of main parameters of 
perception and planning available in MoveIt! motion planning 
framework in order to identify parameters the most affecting 
the overall performance of the system. The initial benchmark is 
performed on a virtual simulation of UR3 robot workspace with 
a single obstacle. The performance is measured by means of 
successful runs, path planning and execution durations. The 
results of the benchmark are processed and, based on the 
results, three parameters are chosen to be optimized using 
Particle Swarm Optimization. The optimization of the 
parameters is performed for the same motion planning problem 
as presented in the first benchmark. In order to test the 
performance of the system with optimized parameters, four 
more benchmarks are performed using the simulated and real 
robot workspace. The results of the benchmarks indicate 
improvements in most of the measured indicators. 
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1 INTRODUCTION 

Currently, many manufacturing processes have proven to be 
difficult to fully automate either because the task requires 
human-level perception and manipulation capabilities not yet 
achievable by robots or because they must be performed near 
human workers. To overcome this difficulty, a robot and human 
can collaborate in a shared workspace to perform manufacturing 
tasks [Vysocky 2016]. However, ensuring high efficiency and 
safety during this collaboration requires the robot to be able to 
avoid interference with the human and potential obstacles. 
Motion planning is, therefore, an indispensable skill for robots. 
Automatic replanning of robot trajectory is a complex task 
involving processing data from a sensor system usually 
consisting of multiple depth cameras, as well as utilising a fast 
solution for path search in the free space. Motion planning 
algorithms attempt to generate trajectories that are both 
feasible and optimal based on performance criteria that may 
vary depending on the task and environment.   
High-level motion planning framework MoveIt! [Sucan 2013] is 
widely used for developing robotic applications requiring 
manipulation and automatic motion planning. MoveIt! allows to 
quickly and easily set up a perception pipeline for processing 

data obtained by depth cameras monitoring the workspace of 
the robot for further use during collision-free motion planning. 
The workspace environment represented by 3D point cloud data 
is continuously processed by MoveIt! creating a 3D occupancy 
map of the workspace – OctoMap [Hornung 2012] is generated 
from the filtered point cloud. Trajectory planning is done within 
this memory-efficient representation of the environment. 
During configuration of MoveIt! for a particular task, the user can 
set up and change multiple parameters for each of the motion 
planners as well as parameters of perception, such as the 
resolution of OctoMap. Many parameters can drastically change 
the performance of the system, and their actual optimal 
parameters highly depend on the environment, manipulation 
task and the robot itself. Since some of the parameters are 
interrelated, setting optimal values for the parameters requires 
complicated manual tuning.  
The motivation for this paper is to conduct a basic benchmarking 
of main perception parameters and to evaluate an automatic 
optimisation of the parameters using an evolutionary 
optimisation method. The paper aims to provide insight into the 
influence of the main perception parameters available for 
configuration in MoveIt! on overall performance during motion 
planning and an approach to tuning some of these parameters. 
In addition to the testing of the perception parameters, for the 
defined motion planning problem, the best performing planner 
is chosen from 23 planning algorithms available in MoveIt!. The 
influence of each parameter is measured using a benchmark 
conducted on a virtual simulation of UR3 robot workspace. The 
configuration of the simulation model is set to closely match that 
of a real workspace that is used in further benchmarks of 
optimised parameters. Metrics for comparing the influences of 
the parameters on the overall system performance is chosen, 
and measured data are processed. Subsequently, based on 
processed data, the best performing planner is chosen and are 
selected three parameters for optimisation using an 
evolutionary optimisation method - Particle Swarm Optimization 
(PSO) [Kennedy 1995, Eberhart 2001]. After performing the 
optimisation of the parameters, the performance of optimised 
parameters is evaluated in four benchmarks which include two 
benchmarks conducted a real robot system. Lastly, the results 
and observations made during benchmarks are discussed, and a 
conclusion of the paper is provided. 

2 BACKGROUND 

Robot Operating System (ROS) is a robotics software platform 
[Quigley 2009]. It offers a distributed framework of processes 
that enables parts of the system to be individually designed and 
loosely coupled at runtime. ROS contains services, ready to use 
libraries and tools for the development of different types of 
robotic applications.   
ROS is often used with high-level motion planning framework 
MoveIt! [Sucan 2013]. The framework is often used for a wide 
range of industrial and service robotic applications requiring 
automatic motion planning and is by default configured with 
Open Motion Planning Library (OMPL) [Sucan 2012]. This library 
consists of state-of-the-art sampling-based motion planners. 
MoveIt! uses OMPL planners to create a path to solve the 
defined motion planning problem.  
Sampling-based motion planning algorithms avoid explicitly 
describing the entire configuration space of the robot - instead, 
a collision detection algorithm is used to probe the configuration 
space to determine whether a configuration state is in free 
space. The sampled configuration states are connected in order 
to find a feasible motion plan.  This type of motion planners is 
widely used due to its success in finding feasible paths in high 
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dimensional tasks. Typically, they have probabilistic 
completeness, which means that if a solution exists, it will be 
found (with an increasing number of iterations), but if not, the 
algorithm can run for an infinite time. Sample-based planners 
can be classified into two types: multi-query and single-query 
planners. 
The approach of multi-query planners implies that at the pre-
processing phase a roadmap representing connectivity of 
configuration space is generated (by iterative collection and 
testing non-collision states) and later multiple path search 
requests can be processed on its base by searching for a specific 
path by linking individual segments available in the roadmap. 
The pre-processing phase is required for multi-query methods, 
where it takes most of the computational time. Using the same 
roadmap again will decrease the computing time. However, the 
same map can only be used in a static environment.  
Single-query planners do not create a roadmap representing the 
whole free space but generate a new tree-like graph each time 
they search for a solution. These tree graphs grow towards each 
other to link the initial and the goal configurations. Single-query 
methods are much faster, but the path found by the algorithm 
usually contains a lot of unnecessary curves and requires 
smoothing. 
A brief overview of 23 OMPL motion planners available in the 
current version of MoveIt! (0.9.17) is provided in the works of 
Meijer et al. [Meijer 2017]. They investigated the performance 
of OMPL planners in a series of empirical studies, which have 
shown comparative effectiveness of planners used with multiple 
types of manipulators performing a set of grasping tasks. The 
benchmark data provided in their paper shows that the 
performance of the planners can slightly vary for different robots 
and task environments. The measurements were conducted in a 
simulated environment and did not utilise the perception 
pipeline of MoveIt!, hence no effect of perception parameters 
was tested.  
A study performed by Burger et al. [Burger 2017] addressed the 
problem of automatic algorithm configuration for the case of 
motion planning algorithms available in the MoveIt! framework. 
Researchers proposed a tool based on Sequential Model-based 
Algorithm Configuration [Hutter 2011] to optimise the 
parameters of five motion planners on specific problems with 
the goal of improving the performance of the planners in terms 
of planning duration and solved runs. The performance of the 
planners was benchmarked in a series of simulated motion 
planning problems using two industrial manipulators; however, 
no cameras were used to monitor the surrounding of the robots 
during the tests, thus the effects of the perception settings were 
not investigated. Cano et al. [Cano 2016] in their work addresses 
the problem of automatic optimal configuration of distributed 
ROS system in terms of CPU utilisation and data flow from each 
of the optimised ROS nodes. The researchers first investigated 
the correlation between the setting of one critical parameter of 
each ROS node, its performance and CPU utilisation. Next, based 
on these relations, the optimal settings for each node of ROS 
graph was chosen. Research group of Cano et al. [Cano 2018] 
further extended the optimisation task to evaluate and compare 
the efficiency of four optimisation methods for tuning the 
parameters of two motion planning algorithms available from 
OMPL. The compared optimisation methods included: random 
sampling (as reference), AUC-Bandit approach [Alvaro 2010], 
Bayesian Optimisation [Shahriari 2016] and sequential 
optimisation based on Random Forest model [Hutter 2011]. 
Motion tasks were defined for a manipulator in the presence of 
obstacles in a simulated planning environment.  
Nevertheless, neither of these studies included measuring the 
influence and optimising the parameters of perception of the 

surrounding, with respect to the overall performance of a 
system. An example of such parameter is the accuracy of the 
representation of perceived surrounding utilised for motion 
planning (parameter of OctoMap resolution in case of MoveIt!). 
Optimising these parameters requires setting up the acquisition 
of 3D data from a simulated environment and incorporating it 
into perception pipeline of the MoveIt! in order to bring the 
motion planning task closer to real conditions. Settings of the 
perception pipeline and planners expose a high number of 
possible parameter combinations which represents a large 
search space. Manually finding the best parameter configuration 
within this search space is tedious and time-consuming. Thus, an 
approach for an automatic search for optimal parameters for a 
particular planning task and environments is the main target of 
this work.  
In this paper, we use both Gazebo [Koenig 2004] simulation and 
real UR3 robot workspace for performing the benchmarks. The 
workspace is monitored by a single depth camera RealSense 
D435. UR3 robot has 6 degrees of freedom, a working radius of 
500 mm and a maximum payload of 3 kg. Stereo depth camera 
RealSense D435 has a depth image resolution of 1280x720 and 
can provide depth images at 90 frames per second with a 
maximum range of 10 m. There is no limit on the number of 
cameras observing the same object simultaneously since the 
cameras do not interfere with each other. The real and simulated 
workspaces of UR3 robot used in benchmarks are shown in 
Figure 2.  
Particle Swarm Optimization [Kennedy 1995, Shi 1998, Eberhart 
2001] is a population-based evolutionary optimisation method 
initially developed by Eberhart and Kennedy inspired by the real-
world example of the behaviour of bird flocks. Swarm (flock) 
consists of particles (representing solutions for the defined 
problem) and each particle moves through the search space with 
a velocity, which is regularly updated by the particle’s previous 
best performance and by the previous best performance of the 
swarm. 

3 BENCHMARK OF PERCEPTION AND PLANNING 
PARAMETERS 

As a benchmark environment (Benchmark 1) for the parameters, 
a Gazebo simulation of the robot workspace was used. The 
simulation model closely resembles the real robot workspace 
used in further benchmarks of the optimised parameter values. 
The UR3 robot is equipped with a gripper and placed on a table. 
The workspace is monitored by a single simulated RealSense 
D435 depth camera (see Figure 1), 3D point cloud data gathered 
from the simulation environment is published into ROS topic 
using Gazebo plugin. 

 

Figure 1. Location of the depth camera 

The parameters of the virtual camera were set to match that of 
the real one. 3D point cloud data of the robot environment is 
continuously processed by MoveIt! so that the points that 
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belong to the robot’s body and its static periphery are removed 
from the cloud accordingly to the meshes defining their collision 
volumes. The initial end-effector (Home) position is located 
above the table in Home position of the robot. During the 
benchmark, the task of the robot was to consecutively move to 
goal positions A, B, back to A and return to Home position (see  
Figure 2). Goal positions are defined by joint angles. A simple 
cylinder placed on the table represented a movable obstacle on 
the path of the robot. The obstacle blocks the direct joint 
movement between the poses. Gazebo simulator is configured 
to use ODE physics engine. 

  

Figure 2. Robot movement during benchmarks: A and B goal positions 
(left); visualisation of movement around the obstacle (right)  

3.1 Tested parameters 

The performance influence of the following perception and 
planning parameters was tested during the benchmark:  

 Octomap resolution – specifies the resolution at which the 
representation of the workspace is maintained in a 3D 
occupancy map (defined in meters). Changing this 
parameter can influence not only planning time but also 
the length of the planned movements. 

 Point subsample – defines the degree of reduction of the 
density of the point cloud during the generation of 3D 
occupancy map.  This parameter can significantly change 
the time required to update the map and manifests the 
most in a dynamic environment with moving obstacles. An 
excessive decrease in the value of this parameter can lead 
to a very sparse point cloud, which in turn will result in 
generating a sparse occupancy representation of 
obstacles. Sparse representation of obstacles in an 
occupancy map can cause the motion planning algorithm 
to find solutions in unnecessary proximity to these 
obstacles or even unfeasible path plans. 

 Workspace limitation – when enabled, the available 
workspace for motion planning was constrained by the 
boundaries of the table on which the robot is located. 

 Collision mesh – a model provided as collision volume of 
the robot. This parameter can drastically influence the 
performance because collision checking is performed 
multiple times during the path planning procedure. The 
simplified collision mesh reduces the number of polygons 
from 37686 to 2058 comparing to the default mesh of UR3 
robot.  

 Goal joint tolerance – defines the maximum permissible 
deviation of the joint position of the robot at which the 
pose found during motion planning is accepted as the goal 
pose.  

 Kinematics solver – defines the kinematics solver to be 
used during motion planning. The default kinematics 
solver defined by MoveIt! is KDL Kinematics plugin suitable 
for general use with robots representing serial kinematic 
chains. Specific solvers, such as, UR3 Kinematics plugin, are 
explicitly compiled to be used with a specific robot.  

 Longest valid segment fraction – defines the fraction of 
the robot’s configuration space that, given the robot is not 
currently in a collision, it is assumed the robot can travel 
while remaining collision-free. If an edge between two 
nodes of a roadmap is less than this fraction of the 
configuration space, then no collision check will be 
performed along the edge between the nodes.  

 Max update rate – defines the maximum update rate at 
which the OctoMap representation will be updated. 

 Path simplification – enables simplification of the post-
processing of the motion plan. It works by removing 
unwanted states and vertices from the obtained path.  

 Planner – motion planning algorithm from the list of 
available planners in OMPL. This parameter was chosen for 
the testing in order to find the best performing parameter 
for the particular task environment used in the 
experiments. Meijer et al. [Meijer 2017] in their work 
conducted an extensive parameter selection for the 
available OMPL planners, so for use in benchmarks the 
planners’ parameters described in their paper were used. 
BFMT and LBTRRT planners resulted in errors for the 
defined motion planning problem and will not be used 
during the benchmark.  

For all parameters, the performance benchmarks were 
conducted and compared in two configurations: default and 
modified value. The default and modified values of the 
parameters for the benchmark are provided in Table 1.

Parameter Initial value Tested value(s) 

Point subsample 1 150 

Workspace limitation Enabled Disabled 

Collision mesh 
Default high poly model for UR3 

37686 polygons 
Simplified low poly model for UR3 

2058 polygons 

Goal joint tolerance (radians) 1e-05 0.01 

Kinematics solver KDLKinematics – generic kinematics solver UR3Kinematics – UR3-specific kinematics solver 

Longest Valid Segment Fraction 0.005 0.0005 

Max update rate (Hz) Unlimited 6 

OctoMap resolution (meters) 0.02 0.005 

Path Simplification Enabled Disabled 

Planner RRTConnect 

SBL, EST, BiEST, ProjEST, KPIECE, BKPIECE, LBKPIECE, RRT,  
RRTConnect, PDST, STRIDE, PRM, LazyPRM, RRTstar, PRMstar,  

LazyPRMstar, FMT, TRRT, BiTRRT, SPARS, SPARStwo 

Table 1. Tested parameters and their values
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The test values were selected with regard to preliminary tests, 
which ensured that with all the specified parameter 
modifications (except for planners) the robot is able to perform 
at least one successful cycle. 

3.2 Measured indicators 

A total of n=31 variants of the system settings (configurations 
C = {c1, …, cn}), including the initial, were compared. For each of 
the settings, 30 simulation cycles were performed: move from 
Home to A, from A to B, from B to A, from A to Home (this last 
motion is not measured). The first and the last movements were 
the least affected by the obstacle since its position did it restrain 
the robot’s movements. 
The goal of tuning the perception and planning parameters is to 
find such combinations of parameter values at which the time of 
planning and executing all movements will be minimised 
simultaneously with reaching the maximum ratio of successful 
attempts relative to the total number of attempts. Hence as 
metrics for the benchmark the following indicators of the 
performance were measured for the three first movements of 
the robot: 

 Duration of motion planning – the time it takes for a 
planner to produce a plan. Low computing time is 
considered as high performance. 

 Duration of execution of the planned movement – 
correlates with the length of the generated path. Low 
execution duration is considered as high performance. 

Additionally, an indicator for cycle success ratio is measured - the 
success of the entire cycle expressed in terms of the percentage 
of total runs resulting in feasible paths without collision with the 
obstacle. The high success ratio is considered as high 
performance. 
Total of m=7 indicators T = {ti, …, tm} are measured for each run. 
To obtain reliable data, each setting was run 30 times for the 
given motion planning problem. The maximum motion planning 
time during all the benchmarks was limited to 5 seconds. 

3.3 Results of benchmark 

The benchmarking experiments are performed on a system with 
an Intel i7 2.80GHz processor, 16GB of RAM and Nvidia GeForce 
GTX 1070, Kinetic distribution of ROS running on Ubuntu 16.04, 
with Gazebo simulator 7.17 and MoveIt! 0.9.17. 
Only successful cycles were used in the analysis: the planner 
should be able to find a solution for a defined problem, and the 
execution of the planned motion should be collision-free. The 
results of the benchmark are shown in Figure 4. The chart does 
not show values for planners which have not completed any 
successful cycle (either due to insufficient planning time or due 

to a collision of the robot with the obstacle). Only measurements 
shorter than 5 s are shown in the charts depicting the planning 
time.  
Instead of analysing the metrics indicators individually, it was 
decided to bring all the data to a single scale and visualise in a 
single chart. Since measured duration and success ratio cannot 
be directly summed due to difference in the value ranges and 
opposite requirements, it was necessary to create a 
normalisation function f( xi̅,j, x̅i,j+1, ... xi̅,m ) that would represent 
the overall success metric ri of configuration ci  - total relative 
performance. The following transformation to relative 
performance (1) was used to normalise the measured planning 
and motion execution durations 

𝑟𝑖,𝑗 = (1 −
�̅�𝑖,𝑗 − 𝑥𝑗 𝑚𝑖𝑛

𝑥𝑗 𝑚𝑎𝑥 − 𝑥𝑗 𝑚𝑖𝑛
) ∗ 100 %, 𝑗 ∈ {1, . . . , 6} (1) 

where �̅�𝑖,𝑗  - the average value of indicator tj measured for 

configuration ci,   
𝑥𝑗 𝑚𝑖𝑛 – the minimum value of tj indicator measured for all 

configurations C, 
𝑥𝑗 𝑚𝑎𝑥 – the maximum value of tj indicator measured for all 

configurations C. 
The metric of the total relative performance ri of ci configuration 
is calculated as an average of the relative performances ri,j for all 
parameters (2) 

𝑟𝑖 =
1

𝑚
∑ 𝑟𝑖,𝑗

𝑚

𝑗=1

 (2) 

The normalisation function (1) was applied to all measured 
indicators for all configurations C, and the results are shown in 
Figure 3. The resulting graph shows the percentage performance 
of individual measured parameters for each measured variant ci 
relative to other configurations (including the initial settings). 
Additionally, the chart shows the overall (total) performances of 
configurations calculated accordingly to equation (2). 
Figure 5 illustrates the percent changes in overall system 
performance when setting modified values for each parameter 
compared to overall planning performance by default. The 
values were obtained by comparing the value of the total 
performance of each configuration with the performance of the 
initial configuration  

𝑑𝑖 = 𝑟𝑖 − 𝑟1, 𝑖 ∈ {2..n} (3) 

where 𝑟1 – total relative performance with the initial 
configuration. 

 

Figure 3. Relative performance of the measured configurations (overall performances are shown as blue marks), the higher is better 
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Figure 4. Parameters benchmark. (a) Planning time Home–A, lower is better; (b) Execution time Home–A, lower is better; (c) Planning time A–B, lower 
is better; (d) Execution time A–B, lower is better; (e) Planning time B–A, lower is better; (f) Execution time B–A, lower is better; (g) Percent of successful 
cycles, higher is better  
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Figure 5. Change of the overall relative performance for each configuration. Positive values denote improvement; negative values denote 
deterioration  

It can be seen from Figure 5 that certain parameters had a 
negative effect on overall system performance. For example, 
deactivated Path simplification resulted in a significant 
prolongation of the planned trajectories without much effecting 
the planning time. Disabled workspace limitation, as well as UR3-
specific kinematics solver, do not show significant acceleration 
during planning. Drastically acceleration of the planning process 
can be observed with the simplified low poly collision mesh. 
Minor positive influences were registered for Points subsample, 
Goal joint tolerance, Max update rate and OctoMap resolution 
parameters. Modification of Longest valid segment fraction 
parameter caused a significant decrease in performance yet 
increasing the success ratio. 
Considering the planners, success ratio over 90% was retrieved 
with EST, KPIECE, BKPIECE, PRMStar, ProjEST, RRTConnect, 
STRIDE. Nevertheless, considering the overall performance 
metric, the best performing planner for the defined motion 
planning problem was BiTRRT due to the lowest planning and 
movement durations, even though the success ratio of the 
planner was lower than 90%. While tracking the simulations, it 
was found that trajectories generated by BiTRRT are often much 
closer to the obstacle comparing to the trajectories of more 
reliable planners, leading to a higher chance of collision. 

4 OPTIMISATION OF PARAMETER SETTINGS  

This section describes an application of PSO optimisation 
algorithm to a task of finding an optimal combination of 
perception parameters leading to improvement in the overall 
performance of the system. 
 

4.1 Selecting parameters for optimisation 

Since the objective of optimising the combination of perception 
parameters that are interrelated is a task of optimisation of 
nonlinear function with unknown gradient, it was decided to use 
PSO algorithm. Based on the influence of individual parameters 
on the overall performance of the system analysed in the 
previous step, three parameters were chosen for optimisation: 

 OctoMap resolution. 

 Longest valid segment fraction. 

 Points subsample. 
These parameters are interrelated: for example, increasing the 
resolution of the OctoMap while reducing the density of the 
processed point cloud can result in an inaccurate definition of 
obstacle boundaries in the robot workspace. It was decided not 
to use the Goal joint tolerance parameter for optimisation 
because its value affects the accuracy of the resulting position 
sought by the motion planner. The optimisation was performed 
using a planner with the highest performance during the first 
benchmark - BiTRRT.  

According to the previously chosen definition of the overall 
performance of the system, there are multiple objectives for the 
optimisation: objectives of minimising multiple duration 
parameters with different ranges and simultaneously 
maximising the success ratio. Instead of using the multi-
objective optimisation [Gunantara 2018] approach required 
when multiple different functions must be optimised 
simultaneously, it was decided to use scalarising of the multi-
objective optimisation problem to formulate a single-objective 
optimisation problem.  
The goal of the optimisation algorithm is to find the optimal 
combination of perception parameters represented by the 
vector p* = [p1, p2, p3] ∈ S, which minimises the optimisation 
fitness function g(p) (4) 

𝑔(𝑝∗) ≤ 𝑔(𝑝), ∀ 𝑝 ∈ 𝑆 (4) 

where S is the search-space for p defined by the boundaries in 
Table 2 (lower and upper bounds). 
As a scalarisation function, it was decided to use negated results 
of the normalisation function defined in equation (1) calculated 
using data measured during benchmark runs with the current 
particle. Additionally, unsuccessful attempts were penalised by 
multiplying the objective value of the fitness function outcome 
by a penalty factor b = 10. Without penalty factor, the algorithm 
tended to find only solutions with the shortest duration – 
parameters causing the robot to ram into the obstacle (leading 
to the shortest overall duration of the movements). As an 
environment for testing the same motion planning problem as 
during Benchmark 1 was used. Implementation of a modified 
PSO algorithm accordingly to [Shi 1998] was used. This 
implementation of the algorithm requires adjustment of three 
parameters: ω, c1 and c2. Inertia weight ω provides a balance 
between global and local explorations for each particle. The 
constants c1 and c2 are the scaling factors that pull each particle 
toward its personal best and global best positions, respectively. 
After a set of manual tests, the parameters set during the 
optimization as following: ω = 0.8, c1 = 1.2 and c2 = 1.4. During 
optimisation, each solution (particle) was tested five times to 
average the results. Overall, two independent optimisations 
were made, each with 10 populations and 20 particles in each 
population. 
Two candidate solutions (best results obtained by the particles 
during the runs of optimisation) are displayed in Table 2. It is very 
likely that the difference between obtained solutions is caused 
by randomisation that is in the principle of the sampling-based 
motion planner BiTRRT.  
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Parameter 
Lower 
bound 

Upper 
bound 

Best candidate solution after the 
first run of optimisation 

Best candidate solution after the 
second run of optimisation 

OctoMap resolution - p1 0.01 0.1 0.0678 0.0285 

Points subsample - p2 1 200 125 103 

Longest valid segment fraction - p3 0.001 0.01 0.0056 0.0071 

Table 2. Results of optimisation  

4.2 Benchmark of optimized parameters 

In order to compare the performance of the system with the 
optimised parameters comparing with initial settings, four 
benchmarks were performed: 2 benchmarks in simulated 
environments (Figure 6) and 2 benchmarks with a real robot 
(Figure 7). The difference between the benchmarks is in different 
positions and shapes of the obstacles presented in the 
workspace of the robot. For the benchmarks the first candidate 
solution (see Table 2) was used p* = [0.0678, 125, 0.0059]. 

 

Figure 6. Benchmarks 1 (left) and 2 (right) in a simulated environment 

 

Figure 7. Benchmarks 3 (left) and 4 (right) on real robot 

During each benchmark, system performance was compared for 
four configurations: 

1) Initial configuration with BiTRRT planner, default high poly 
collision mesh. Parameters OctoMap resolution, Points 
subsample, Longest valid segment fraction are set to 
default values. 

2) Configuration with optimised parameters (OctoMap 
resolution, Points subsample, Longest valid segment 
fraction) and BiTRRT planner. 

3) Initial configuration with RRTConnect planner and default 
high poly collision mesh. Parameters OctoMap resolution, 
Points subsample, Longest valid segment fraction are set 
to default values. 

4) Configuration with optimised parameters (OctoMap 
resolution, Points subsample, Longest valid segment 
fraction), BiTRRT planner and low poly collision mesh. 

Configurations were compared in the following accordance:  

 Configuration 1 (Initial, BiTRRT, High poly) with 
Configuration 2 (Optimised, BiTRRT, High poly) to assess 
only the influence of the optimised parameters.  

 Configuration 3 (Initial, RRTConnect, High poly) with 
Configuration 4 (Optimised, BiTRRT, Low poly) to assess 
the total change of the indicators after applying all the 
adjusted parameters (including the low poly collision 
mesh).  

To give reliable data on the performance of these configurations, 
each was measured 30 times for the given motion planning 
problem. The results of the benchmarks are shown in Table 3 and 
Table 4. Tables represent mean durations of planning and 
execution for each movement as well as the overall success ratio 
of the configurations. 
Both benchmarks performed in the simulation using the 
optimised configurations show improvements in most of the 
measured indicators (durations of motion planning and 
execution). However, benchmark 2 (Table 3) shows a significant 
decrease in success ratio using optimised parameters with 
BiTRRT planner. After a more detailed analysis, it was found that 
in this particular case the setting of the OctoMap resolution and 
points subsample parameters led to an inaccurate mapping of 
the obstacle boundaries, which in turn led to a generation of 
trajectories in excessive proximity to the obstacle. It can thus be 
assumed that the reason is conducting of the optimisation 
process in the environment of the Benchmark 1, which shows 
the advantage of the optimised configuration comparing over 
the initial one. The parameters were optimised for a specific 
motion problem - the particular position of the obstacle. 

 Real robot - Benchmark 1 Real robot - Benchmark 2 

 
Initial 

BiTRRT  

High poly 

Optimised 

 BiTRRT  

High poly 

Initial 

RRTConnect 

High poly 

Optimized 

BiTRRT  

Low poly 

Initial 

BiTRRT  

High poly 

Optimised 

 BiTRRT  

High poly 

Initial 

RRTConnect 

High poly 

Optimised 

BiTRRT  

Low poly 

Plan Home-A [s] 1.780 1.533 1.599 0.373 1.804 1.592 1.865 0.194 

Rel. change [%] 13.882 76.665 11.774 89.616 

Execution Home-A [s] 5.172 4.836 4.825 3.470 6.720 5.103 9.819 5.150 

Rel. change [%] 6.499 28.089 24.069 47.553 

Plan A-B [s] 1.802 1.660 1.563 0.266 1.717 1.456 1.889 0.122 

Rel. change [%] 7.877 83.005 15.232 93.558 

Execution A-B [s] 8.133 8.504 9.723 9.481 6.765 8.162 9.598 6.159 

Rel. change [%] -4.563 2.481 -20.656 35.828 

Plan B-A [s] 2.209 2.001 2.396 0.277 2.081 1.838 2.144 0.126 

Rel. change [%] 9.414 88.440 11.680 94.119 

Execution B-A [s] 7.825 7.980 12.882 8.913 7.876 8.179 9.676 5.154 

Rel. change [%] -1.980 30.812 -3.849  46.734 

Success ratio [%] 83.333 93.333 93.333 96.666 93.333 30.000 100.000 23.333 

Rel. change [%] 10.000 3.333 -63.333 -76.667 

Table 3. Results of optimisation in benchmarks with simulation. Positive values denote improvement; negative values denote deterioration   
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 Real robot - Benchmark 3 Real robot - Benchmark 4 

Initial 

BiTRRT  

High poly 

Optimised 

 BiTRRT  

High poly 

Initial 

RRTConnect 

High poly 

Optimized 

BiTRRT  

Low poly 

Initial 

BiTRRT  

High poly 

Optimised 

 BiTRRT  

High poly 

Initial 

RRTConnect 

High poly 

Optimised 

BiTRRT  

Low poly 

Plan Home-A [s] 1.880 1.877 2.245 0.336 1.848 1.834 1.964 0.282 

Rel. change [%] 0.130 85.024 0.767 85.629 

Execution Home-A [s] 5.368 5.302 5.742 3.712 7.111 6.451 9.153 4.985 

Rel. change [%] 1.242 35.354 9.289 45.542 

Plan A-B [s] 1.902 1.655 2.170 0.325 1.821 1.712 2.025 0.276 

Rel. change [%] 12.958 85.043 5.978 86.385 

Execution A-B [s] 8.743 8.451 11.229 6.370 8.063 6.925 10.345 4.934 

Rel. change [%] 3.341 43.268 14.108 52.304 

Plan B-A [s] 2.193 2.081 2.672 0.317 2.103 1.690 2.357 0.296 

Rel. change [%] 5.119 88.126 19.647 87.443 

Execution B-A [s] 5.514 8.547 10.548 6.358 7.892 7.664 10.628 4.445 

Rel. change [%] -55.016 39.725 2.893 58.177 

Success ratio [%] 83.333 90.000 100.000 86.667 83.333 63.333 100.000 53.333 

Rel. change [%] 6.667 -13.333 -20.000 -46.667 

Table 4. Results of optimisation in benchmarks with the real robot. Positive values denote improvement; negative values denote deterioration    

Benchmark results with a real workplace (Table 4) are similar to 
the results of benchmarks conducted in simulated Gazebo 
environment. Almost all measured cycle parameters show 
improvement, although the success ratio indicator during 
Benchmark 4 showed a decrease due to more frequent robot 
collisions with an obstacle. Similar to Benchmark 2 (Table 3) it 
was found that the reason was an inaccurate mapping of the 
obstacle boundaries due to the settings of OctoMap resolution 
and points subsample parameters – the edge of OctoMap nodes 
did not cover the obstacle completely. It is necessary to be taken 
into account that the density and accuracy of the point cloud 
obtained by a stereo depth camera decreases with the 
increasing distance of the monitored object [Sung 2019, Chuang-
Yuan 2019]. This corresponds with the fact that both 
benchmarks 2 and 4 used more distant obstacles than ones used 
during benchmarks 1 and 3. The observed decrease of success 
ratio is also likely to be caused by the use of BiTRRT planner, 
which already showed a reduction of value of this indicator 
during the first stage of the benchmarking (see Figure 3, Figure 
4).   
The best improvements of performance indicators along with 
the highest influence on the parameters were achieved for all 
benchmarks for Configuration 4 (with simplified low poly 
collision mesh). The use of optimised parameters without 
simplified collision mesh on average for all benchmarks led to a 
decrease in planning duration by 9.5% although the movement 
duration increased on average by 2.1%. In case of using 
optimised parameters along with simplified collision mesh, the 
planning duration was on average decreased by 86.9%, and the 
movement duration decreased on average by 38.8% (see Table 
3, Table 4).  

5 DISCUSSION 

In this section, from the results of the benchmarks observations 
are made and discussed. The influence of the perception and 
planning parameters on the performance was studied by means 
of success ratio, motion planning and execution duration. The 
chosen total performance metric for comparing the 
configurations equally opt for all the indicators measured. 
Should be taken into consideration that this metric can be less 
suitable for applications requiring higher success ratio – for 

example collaborative workspace where safety is the most 
important factor, the metric can be changed in order to opt more 
for configurations with higher success ratio meaning a lower 
chance of collision of the robot with a human operator. 
Considering the comparison of overall performance for available 
planners (Figure 3) the best performing planner for the defined 
motion planning problem was BiTRRT.  Nevertheless, the success 
ratio for this planner was lower than 90%. A possible solution for 
increasing the success ratio is to increase obstacle padding - the 
required minimum distance to the obstacle during the planning 
of a trajectory. Currently available version of MoveIt! (release 
0.9.17) does not allow configuring this parameter (or more 
precisely – the parameter does not affect the planning), but the 
same effect in a real robot could be achieved using an oversized 
collision model (padded mesh) of the robot. Despite the 
beneficial effect of the optimised perception parameters on the 
performance, the positive effect of the simplified collision mesh 
for the robot is significantly higher.  
More investigation into parameters of particle swarm 
optimisation is needed in order to achieve a more reliable and 
faster optimisation process. The optimisation process can be 
carried out with more populations in order to achieve global best 
results for the given motion planning problem. Given lower 
success ratios in Benchmarks 2, 4 (Table 3, Table 4) it might be 
considered that the optimised parameters are not fully 
transferable to other motion planning tasks once the 
optimisation is performed for a specific task environment (in this 
case Benchmark 1). The optimisation should be carried out for 
multiple variations of obstacle positions and multiple 
modifications of the start and goal positions of the manipulator, 
so the optimised configuration will achieve better results for a 
wider range of tasks. A monitoring system consisting of multiple 
depth cameras can be used, in order to overcome the problem 
with inaccurate mapping of the obstacles in the workspace. 
For this research, the conducted benchmarks did not consider 
dynamic obstacles. The result of the optimisation in a dynamic 
environment is likely to be different from the results acquired 
with the static ones, some of the perception parameters may 
show more influence on the overall performance of the system. 
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6 CONCLUSIONS 

The paper presented benchmark data for main perception and 
planning parameters available for configuration in the motion 
planning framework MoveIt!. The influence of each parameter 
was measured during a benchmark conducted on a virtual 
simulation of UR3 robot workspace. Parameters’ influences of 
the performance were studied by means of success ratio, motion 
planning and execution duration. Metrics for comparing the 
impact of the parameters on the overall system performance 
were chosen, and the measured data were processed. Based on 
processed data, BiTRRT planner was identified as the best 
performing planner for the defined motion planning problem. 
Additionally, considering the influence of individual parameters 
were selected three parameters for performing optimisation of 
their values using an evolutionary optimisation method - Particle 
Swarm Optimization. After performing the optimisation of the 
parameters, the performance of the optimised parameters was 
evaluated in 4 benchmarks, 2 of which were conducted a real 
robot system. As exhibited in Table 3, Table 4 the benchmarks 
shown comparative improvements in most of the measured 
indicators; however, the use of BiTRRT planner with optimised 
parameters has decreased the success ratio of the performed 
attempts.  
The proposed method of optimisation of perception and 
planning parameters along with the evaluation of their influence 
on the overall system performance is useful for easing the hard 
task of manual tuning of these parameters in order to get better 
performance, thus minimising the amount of background 
knowledge required to use planning algorithms. The evaluation 
and optimisation are performed using MoveIt! framework 
considering it is ubiquitous use.  
In our future research, we would like to investigate the option to 
implement a faster and more robust method for optimising the 
perception parameters given a wide variety of motion planning 
tasks, including environments with dynamic obstacles. 
Considering that potential users of the optimisation may be 
interested in finding optimal parameters in the shortest possible 
time, more intensive selection of PSO parameters [Rezaee  2013] 
must be performed since these parameters drastically change 
the time needed for the swarm to explore the parameter search 
space. Alternatively, other optimisation approaches as Bayesian 
Optimization [Shahriari 2016] or Sequential Model-Based 
Optimisation [Hutter 2011] can be considered regarding their 
efficiency in similar applications and potentially may use less 
time to find better configurations. However, results of 
benchmarks conducted for motion tasks different from the one 
where the optimisation was performed indicate that to obtain 
stable improvements for a wide range of applications, 
optimisation across multiple diverse tasks must be performed. 
Thus, a set of common motion tasks must be created, which 
should include typical industrial environments, simulating, for 
example, dynamic environment during human-robot 
collaboration, pick and place tasks. The environments should 
include multiple monitoring depth cameras to overcome the 
problem of the inaccurate mapping of the obstacles in the 
working environment. Given the environments and the typical 
motion planning tasks, it is also of use to perform optimisation 
of the visual coverage of the workspace by the cameras by 
adjusting their positions. 
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