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Abstract 

The ongoing climate change and increasingly strict climate goals of the European Union demand decisive 
action in all sectors. Especially in manufacturing industry, demand response measures have a high 
potential to balance the industrial electricity consumption with the increasingly volatile electricity supply 
from renewable sources. This work aims to develop a method to forecast the electrical energy demand 
of metal cutting machine tools as a necessary input for implementing demand response measures in 
factories. Building on the results of a previous study, long short-term memory networks (LSTM) and 
convolutional neural networks (CNN) are examined in their performance for forecasting the electric load 
of a machine tool for a 100 second time horizon. The results show that especially the combination of CNN 
and LSTM in a deep learning approach generates accurate and robust time series forecasts with reduced 
feature preparation effort. To further improve the forecasting accuracy, different network architectures 
including an attention mechanism for the LSTMs and different hyperparameter combinations are 
evaluated. The results are validated on real production data obtained in the ETA Research Factory. 
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1 INTRODUCTION AND MOTIVATION 

The share of renewable energy sources, such as wind and 
solar energy, in global electricity generation has increased 
to almost 27% in 2020, with 6% growth in 2019, and is 
projected to increase further [International Energy Agency 
2020]. Renewable energies are characterized by volatile 
electricity generation and thus reduced predictability 
compared to conventional electricity generation, which 
leads to challenges regarding the grid stability. In the past, 
conventional power plants matched the electricity demand 
and supply [Papaefthymiou 2018]. This control mechanism 
is no longer sufficient. Industrial demand-side management 
(DSM) represents a promising way to balance electricity 
consumption and supply, as the industrial sector is the 
largest electricity consumer with 41.6% global electricity 
consumption in 2016 [International Energy Agency 2018]. 
DSM leads to new saving opportunities in the industry 
through power procurement and demand response 
applications [Beier 2017]. For demand response 
applications, companies flexibly adapt their energy demand 
to the electricity supply by renewable energies. Those 
measures usually need an accurate electric load forecast of 
the respective system under consideration. The presented 
work focuses on deep learning for very short-term load 
forecasting of production machines as a basis for demand 
response applications on machine or factory level, for 
instance load shifting or peak shaving.  

In the following sections, a brief literature review is 
conducted, the deep learning foundations are summarized, 
the experimental setup is presented, and the modelling 
results are evaluated and discussed. Eventually, a 
conclusion is drawn and future research fields are derived. 

2 STATE OF THE ART 

The term load forecasting refers to a systematic 

procedure for making statements about future energy 
demands [Clements 2000; Walther 2019a; Dietrich 2020]. 
Until today, load forecasting is mainly shaped by the supply 
side of the energy sector, where forecasts have been used 
for years to improve the information base and support the 
decision making process in the fields of energy purchasing, 
operations and maintenance [Hong 2010] or financial 
planning [Su 2017]. [Wang 2020] and [Ahmad 2017] 
forecast the load of industrial customers from energy 
supplier perspective using different machine learning 
approaches. However, these approaches did not include 
company-internal information like process data or 
production plans which can significantly improve forecasts 
of the electric load of industrial processes [Bracale 2017].  

The application of short-term data-based electrical 
forecasts in the manufacturing sector is still a very young 
research field with few relevant scientific publications 
[Walther 2021]. On factory level, [Walther 2019b] 
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introduced a 15-minute forecasting model for the electricity 
consumption of a research factory based on Gradient 
Boosting Regression Trees. [Bracale 2017] used multiple 
linear regression to model the electricity consumption of an 
Italian factory 24 hours in advance, incorporating 
information about the production shifts. 

On machine level, many approaches use physical models 
to model the electricity consumption using the main 
processing parameters spindle speed, feed rate, width, and 
depth of cut [Diaz 2010; Rajemi 2010] or material removal 
rate [Gutowski 2006]. However, physical modelling is 
usually more complex than data-based modelling and does 
not incorporate the stochastic nature of some signals [van 
Luttervelt 1998]. A data-based approach to forecast the 
electricity consumption of a machine tool was introduced by 
[Dietrich 2020]. The authors created a complex machine 
learning model to forecast the electricity consumption in the 
next 100 seconds with the aim to enable demand response 
applications on machine or factory level.  

At present, in related forecasting tasks, there are many 
efforts in the field of Artificial Intelligence (AI) modelling 
techniques. One promising class of modelling techniques 
within the AI framework is deep learning. Deep learning 
models are particularly suitable for time series analysis, as 
they are capable of capturing the time varying dynamics of 
the underling system by considering several time steps 
simultaneously. [LeCun 2015; Bianchi 2017] Especially in 
the field of forecasting, deep learning modelling techniques 
seem to be promising. They show great results for related 
forecasting tasks such as renewable energies forecasting 
(see [Wang 2019] for a comprehensive review of several 
deep learning approaches), energy demand forecasting 
from the energy supply perspective [Bianchi 2017; Guo 
2018; Tong 2018] as well as electrical [Cai 2019] and 
thermal [Fan 2017; Suryanarayana 2018] load forecasting 
in the building sector. Here, deep learning modelling 
techniques usually outperform conventional machine 
learning approaches in terms of accuracy, stability, and 
effectiveness. Especially in terms of feature engineering, 
deep learning models show a powerful capability to learn 
hidden patterns directly from raw data [LeCun 2015]. 

Since deep learning modelling techniques show superior 
results for these related forecasting tasks, the forecasting 
task presented in the previous work [Dietrich 2020] has 
been enhanced to a deep learning based forecasting model 
in this work. By that, we anticipate a reduced manual effort 
for feature engineering and an improved forecasting 
accuracy and stability.  

A forecasting horizon of 100 seconds is selected for this 
work to be able to compare the results to the previous work  
[Dietrich 2020]. This forecasting horizon may be sufficient 
for very short term peak shaving on machine level, but 
should be prolonged to at least 15 minutes to be able to 
participate on the intraday market [Dietrich 2020]. 

3 DEEP LEARNING CONCEPTS 

In general, deep learning can be classified as a sub-area of 
machine learning which in turn is a sub-area of AI. While AI 
can be generally defined as the study of intelligent agents, 
machine learning is rather a collection of data-driven 
algorithms that can learn from data without being explicitly 
programmed. Deep learning, in turn, refers to the study of 
Artificial Neural Networks (ANNs) and related machine 
learning algorithms that contain more than one hidden 
layer, also known as deep neural networks. [Ongsulee 
2017]  

Two main concepts of deep learning are utilized in this 
work. Recurrent Neural Networks (RNNs) and especially its 
variant Long Short-Term Memory (LSTM) networks are 
well-suited for time series forecasting [Bianchi 2017], while 
Convolutional Neural Networks (CNNs) are a promising 
method for extracting features and patterns from data 
sequences like time series [Brownlee 2020a]. These 
concepts are introduced in more detail below with focus on 
the peculiarities and hyperparameters important for this 
work. 

RNNs are a form of ANNs but additionally take into account 
the sequence or time domain of input and output by 
recursively self-connecting their neurons [Bianchi 2017]. A 
known drawback of simple RNNs is that they often fail to 
store information of long sequences due to so-called 
vanishing or exploding gradients. That means that 
especially for many time steps, a simple RNN may not be 
able to capture the long-term patterns. LSTMs, however, 
are able to store long-term information better. [Géron 2017] 
Like ANN, RNN and LSTM are trained using a back 
propagation algorithm, the so-called back propagation in 
time, for which the network is unfolded in the time domain. 

The input of LSTM networks consists of fixed-length 
sequences of the input features. One input sequence is 
called a sample, and a certain number of samples that is 
passed to the network in one training step is called a batch. 

Related to the internal state (or memory) transfer between 
batches and samples, there are two kinds of LSTM models: 
stateless and stateful LSTMs. In stateless LSTMs, the 

samples in a batch may be shuffled before training and the 
state is not passed on to the next batch, which means that 
the network learns from disconnected samples and does 
only consider the current input sequence for the current 
prediction. In contrast, batches are not shuffled and their 
state is passed on to the next batch in stateful LSTMs. They 
thus base their prediction on the current as well as past 
input sequences. The internal state of stateful LSTM 
networks may be reset manually, for example after a 
training epoch [Brownlee 2020b]. These two concepts are 
examined and compared in terms of their forecasting 
performance in this work. 

According to [Brownlee 2020a], 1-dimensional CNNs are a 
suitable method for time series forecasting since they 
automatically extract the most important features from the 
given input sequences. CNNs consist of convolutional and 
pooling layers designed to aggregate and densify the 
original information. Convolutional layers apply filters (or 
kernels) to sub-sequences of the input, thereby 

aggregating the information into so-called feature maps. 
Hyperparameters of convolutional layers are the number 
of filters and the kernel size.  Pooling layers apply 

aggregation functions like the maximum or mean to the 
input sub-sequences. They are used to prevent overfitting 

NOMENCLATURE 

AI    Artificial Intelligence 

ANN   Artificial Neural Network 

CNN   Convolutional Neural Network 

DSM   Demand-side management 

LSTM  Long Short-Term Memory 

MT   Machine Tool 

R²   Coefficient of Determination 

RNN   Recurrent Neural Network 

RMSE  Root Mean Squared Error 
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and reduce computational requirements in CNNs. [Géron 
2017] Following the procedure in [Livieris 2020], pooling 
layers have kernel size 2 and output the maximum in this 
work.  

A further deep learning concept important for the presented 
approach is the attention mechanism. It is for example 

successfully applied in the field of language translation 
[Luong 2015], but also widely used for time series 
forecasting tasks, for example by [Kim 2019]. The attention 
mechanism is used to make hidden information in earlier 
layers available to the following layers [Kim 2019]. In LSTM-
networks, it can be applied at different locations: before or 
after the LSTM-layers.  

If the attention mechanism is used after the LSTM-layers, 

it makes the internal memory (hidden states) of the last 
LSTM-layer available to the following layers [Luong 2015]. 
It can be further distinguished into attention2D (2-
dimensional output) or attention3D (3-dimensional output). 
Attention2D computes a weighted sum of the hidden states, 
while attention3D assigns weights to the hidden states 
without performing a summation. Attention3D needs to be 
followed by a flatten and dense layer to provide the 
expected 2D-output to the output layer. On the other hand, 
attention layers before the LSTM-layers are a kind of 

feature selection [Kim 2019]. They learn which inputs are 
most relevant for the following layers. In order to evaluate 
the added value of the attention mechanism to the 
presented architectures, it is applied at all the different 
described locations in this work. 

The neural network architecture in this work combines the 
benefits of both CNN and LSTM. This architecture was for 

instance proposed by [Livieris 2020] for forecasting the gold 
price. The authors state that by using a CNN before an 
LSTM network, important features can be extracted by the 
CNN and time-dependencies in the data can be learned by 
the LSTM.  

The two main architectures of this work, CNN-LSTM 1 and 
CNN-LSTM 2, are visualized in Figure 1. The tuned 
hyperparameters are added in italics beneath the 
respective layers and the locations of the attention layers 
are indicated. The main difference between the two 
architectures is the input shape. For CNN-LSTM 1, the input 
sequence is split uniformly into a number of sub-sequences 
which are passed into individual CNNs for feature extraction 
and then combined again for the LSTM in a flatten layer. 
This was done to first capture possible time dependencies 
within the subsequences with the CNNs and subsequently 
capture the long-term time dependencies with the LSTM. 
Conversely, for CNN-LSTM 2, the input sequence was fed 
directly into the CNN-layers without building sub-
sequences, thus extracting features from the whole 
sequence. Both approaches are compared according to 
their forecasting performance in the results section. 

The attention mechanism was tested at the indicated 
positions in Figure 1 for both models. The hyperparameter 
tuning, data preparation and experimental setup is 
explained in detail in the next chapter. 

4 EXPERIMENTAL SETUP  

This work represents a continued development of the work 
presented in [Dietrich 2020] with the objective to forecast 
the electric load of production machines with a forecasting 

Figure 1: Neural network architecture of the CNN-LSTM models in this work, based on an illustration in [Livieris 2020]. 
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horizon of 100 seconds. Compared to the previous study, 
the experimental setup has not been modified, but the 
authors focused on the data from one machine tool and one 
production process (MT1-OP10) for model development. In 
particular, the examined machine is a vertical CNC grinding 
center for fine machining (EMAG VLC 100 GT) with 
automatic pickup system. It was run in automatic mode to 
ensure a constant cycle time. A reduced feature set 
containing the following input features was used: 

 Electric load of machine tool and components 
(suction, hydraulic aggregate, cooling lubricant 
supply unit) (continuous) 

 Operating mode ‘working’ of machine tool 
(discrete) 

The data was collected directly from the machine PLC and 
an electricity meter with a sampling rate of 1 second. The 
data set includes production and non-production times. 

The generalization capability of the model was evaluated 
on the data from another machine tool, a vertical CNC 
turning center (EMAG VLC 100 Y) (MT2-OP10). The data 
set size for each machine tool is listed in Table 1. 

Table 1 : Amount of used data for model training and 
evaluation including the cycle time and number of cycles 

recorded for each machine tool. 

 

To prepare the forecasting task, the target needs to be 
shifted into the future according to the procedure in [Walther 
2019b]. For simplicity reasons, a one-point-forecast was 
developed, meaning that the model only outputs the value 
in t+100 seconds. For data preprocessing, missing values 
were dropped, outliers were not treated and the 
MinMaxScaler was used for scaling the numerical features. 
These preprocessing steps were adjusted in preliminary 
studies [Chen 2020]. The data was divided into 70% 
training and 30% test data.  

The main experiments were divided into four stages. In 
stage 1, two different kinds of simple stacked LSTM-
networks without CNN-layers were compared: stateless 
and stateful LSTM. The slightly better performing stateless 
LSTM was then used in stage 2 to compare the more 
complex architectures including CNNs presented in section 
3, CNN-LSTM 1 and CNN-LSTM 2.  

In stage 3, the attention mechanism was introduced at the 
different locations within CNN-LSTM 1 and CNN-LSTM 2: 

att-1: attention2D after LSTM 
att-2: attention3D before LSTM 
att-3: attention3D after LSTM 
att-4: attention3D before and after LSTM 

 
In stage 4, the best performing model architecture (CNN-
LSTM 2 att-3) was transferred to MT2, examining its 
generalization capability by tuning and training it on a 
different data set. The stages in overview: 

Stage 1: Stateless vs. stateful LSTM 

Stage 2: CNN-LSTM 1 vs. CNN-LSTM 2 

Stage 3: Attention mechanism 

Stage 4: Transfer to different machine 

Table 2 : Tuned hyperparameters and ranges for stage 1: 
stateful vs. stateless LSTM 

Hyperparameter Range 2 

Sequence length 100 (fixed) 

Batch size 1 choice(200,500,1000) 

Optimizer choice('adam','AdaGrad','RMSProp',
'AdaDelta') 

LSTM layers choice(2,3,4,5) 

LSTM neurons choice(30,40,50,60,70,80,90,100) 

Dropout rate choice(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7) 

Output activation choice('sigmoid','linear','tanh') 

1 Only for stateless LSTM 
2 choice(): random choice between the given options 

Table 3 : Tuned hyperparameters and ranges for stage 2, 
3 and 4 : CNN-LSTM including attention  

Hyperparameter Range 4, 5 

Sequence length quniform(100, 1000, 100) 

Number of sub-
sequences 1 

choice(factors(sequence length)) 

Batch size quniform(100, 1000, 50) 

Optimizer choice('adam','RMSProp', 
'AdaDelta') 

CNN layers (n) choice(2,3,4,5,6) 

Kernel size choice(2, 3, 4, 5) 

Filters choice(16, 32, 64) 

Dense neurons 
(1) 1 

quniform(50,500,50) 

LSTM layers (m) choice(1,2,3) 

LSTM neurons choice(30,40,50,60,70,80,90,100) 

Dense layers (2) 
2 

choice(1,2,3) 

Dense neurons 
(2) 3 

quniform(50,500,50) 

Dropout rate choice(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7) 

Output activation choice('sigmoid','linear','tanh') 

1 Only for CNN-LSTM 1 
2 Only for att-3 
3 Only for att-1 and att-3 
4 quniform(low, high, q): discrete uniform distribution 
between low and high value with step size q 
5 choice(): random choice between the given options 

For statistical evaluation, each model in each stage was 
trained five times for each tested hyperparameter set during 
optimization. Six evaluation metrics are used to compare 
the model performance: The mean of the Root-Mean-
Squared-Error (RMSE) and the coefficient of determination 
(R²), each on train and test data, and the standard deviation 
and maximum value of the R² on the test data. Additionally, 
the mean of the computation time for model training is 
evaluated. Since it depends on the hardware and parallel 
processes, it is here only used as a qualitative assessment 
and weighted lower than the accuracy and error terms. A 
naïve baseline model is used as a benchmark. The naïve 
model uses the current value as the forecast [Hyndman 
2018]. In addition, the model performance is compared to 
the results of the previous work [Dietrich 2020]. 

The tuned hyperparameters and their respective ranges are 
listed in Table 2 and Table 3. Since the neural network 
architectures differ between stage 1 and 2 to 4, the 
hyperparameters are listed separately for stacked LSTMs 

Machine Cycle 
Time (s) 

Cycles Data set 
size (s) 

MT1- OP10 66 685 96,960 

MT2- OP10 354 102 33,300 
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(stage 1) in Table 2 and CNN-LSTM (stage 2, 3, 4) in Table 
3. The hyperparameter tuning was performed using the 
open source toolkit for automated machine learning 
Microsoft NNI [Microsoft 2021], with a Bayesian 
hyperparameter optimization approach using tree-
structured Parzen estimator [Bergstra 2011]. The neural 
networks were implemented using the Python-library Keras 
and an early stopping mechanism was used to prevent 
overfitting. 

Some peculiarities in the hyperparameter selection are 
discussed below. The input sequence length was fixed to 
100 time steps for the stacked LSTMs in stage 1 but later 
treated as a hyperparameter and tuned between 100 and 
1000 time steps in order to provide more time related 
information to the models. Since stateful LSTMs transport 
their internal state over multiple samples, the sequence 
length was not expected to impact their performance. The 
sequence length may however have an impact on stateless 
LSTMs since they do not propagate their internal states 
between samples. For CNN-LSTM 1, the number of sub-
sequences and consequently number of CNN-cells per 
layer was tuned as random choice between whole factors 
of the selected sequence length. For the convolutional 
layers, the number of filters was tuned only for the first layer. 
In subsequent convolutional layers, the number of filters 
was doubled in each layer following the procedures in 
[Swapna 2018; Livieris 2020]. The architectures presented 
in section 3 were adjusted if attention layers were 
introduced after the LSTM layers. For attention2D, a dense 
layer was added after the attention layer and the number of 
neurons of this dense layer was tuned. For attention3D, a 
flatten layer to reduce the dimensionality was added 
followed by multiple dense layers of which the number of 
neurons and number of layers were tuned. 

5 RESULTS 

The results of the first three stages are listed in Table 5. 
First, an analysis regarding the LSTM network type was 
carried out. There is only a marginal difference between the 
two types. The stateless LSTM performed slightly better (Δ 
Test RMSE ≈ 1 W (0,1%), Δ Test R2 ≈ 0,01) than the stateful 
LSTM. Its computation time, however, was three times 
lower. Therefore, stateless LSTM was used for the further 
analyses. For the model architecture comparison, CNN-
LSTM 1 performed slightly better (Δ Test RMSE ≈ 25 W 
(2,1%), Δ Test R2 ≈ 0,02), but its computation time was 
higher than that of CNN-LSTM 2.  

Regarding the attention mechanism, the attention3D after 
LSTM (att-3) outperforms the other combinations for both 
architecture types with a slightly better test RMSE for CNN-
LSTM 2. However, Table 5 shows that the difference 
between all attention mechanisms is not high. The 
difference between the best and least performing model in 
the test set is ΔRMSE 130 W (11,4%) and a ΔR2 of 0.1. All 
attention mechanisms except attention2D deliver slightly 
better results than without attention. However, the 
difference between the test results for the best model with 
and without attention mechanism is only 44 W (3,8%). 
Introducing the attention mechanism does not lead to 
significant changes in the computation time.  

To statistically validate the differences in the forecasting 
accuracy between the models, a two-step nonparametric 
statistical analysis was conducted. First, the Friedman’s 
test was used for the comparison among all algorithms. The 
test allows to detect differences considering the global set 
of algorithms. 

Table 4 : Hyperparameter selection of the best two models 

With the ranked test results of the Friedman’s test, the Holm 
test was conducted in the second step as a post-hoc 
procedure to find the concrete pairwise comparisons. The 
two-step procedure was conducted on the RMSE and R2 
values of the twelve models. The results show whether one 
of the proposed new methods offers a significant 
performance improvement. The null hypothesis of the tests 
is that there is no difference between the performance of 
the different algorithms. To reject this hypothesis, a 
significance level α of 0.05 was used. If the adjusted p-value 
of the Holm test is smaller than 0.05, there is a significant 
difference between the performance of the compared 
models. The Holm test for the RMSE values resulted in no 
statistically significant differences between the twelve 
models. Conversely, the Holm Test for the R2 values 
resulted in five pairs showing a significant difference (see 
Table 6). When considering the results of the Friedman’s 
test, the best performing algorithm can be identified (the 
higher the ranking the better). The three best performing 
models in order are therefore the CNN-LSTM 2 att-3, CNN-
LSTM 1 att-3 and CNN-LSTM 1 att-2. The three worst 
performing models in order are stateful LSTM, stateless 
LSTM and CNN-LSTM 2 att-1. 

Interestingly, the number of sub-sequences in CNN-LSTM 
1 was selected to 1, making its architecture nearly identical 
to the CNN-LSTM 2. While batch size and optimizer were 
selected identically in both models, CNN-LSTM 2 had twice 
as many CNN-layers and a larger kernel size than CNN-
LSTM 1. The LSTM-layers were selected identically, 
whereas the dense layers following the attention3D layer 
were different. Dropout was selected to 0.0 in both cases, 
while the activation of the output layer differed again.  

Table 4 shows the selected hyperparameters of the best 
two models (CNN-LSTM 1 att-3 and CNN-LSTM 2 att-3). 

The input sequence length was 100 in both cases. The 
predictions of the best model (CNN-LSTM 2 att-3) are 
visualized in Figure 2. As in the previous work, the cyclic 
parts and valleys are predicted well, but especially short-
term peaks and the dressing operation (starting at about 
5350 s) are not captured well by the model. This operation 
is performed every ten cycles by the machine tool.  

The best two model architectures of the previous stages 
were then transferred to another machine tool (MT2) in 
stage four. The results are listed in Table 7. Although the 
R2-score of the models of MT2 is significantly lower than 

Hyperparameter 
CNN-
LSTM 1 
att-3 

CNN-
LSTM 2 
att-3 

Sequence length 100 100 

Number of sub-sequences 1 1 - 

Batch size 950 950 

Optimizer adam adam 

CNN layers (n) 2 4 

Kernel size 3 5 

Filters 32 32 

Dense neurons (1) 1 150 - 

LSTM layers (m) 1 1 

LSTM neurons 90 90 

Dense layers (2) 2 1 

Dense neurons (2) 400 150 

Dropout rate 0.0 0.0 

Output activation tanh sigmoid 

1 Only for CNN-LSTM 1   
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that of the models of MT1, it is also significantly higher than 
that of the previous work [Dietrich 2020]. Between the two 
tested model architectures, CNN-LSTM 1 att-3 performs 
slightly better. Different from the results of MT1, the train 
scores of MT2 are significantly better than the test scores, 
indicating a possible overfitting problem. However, a visual 
inspection of the train and test predictions yields that the 
predictions on train and test data are comparable. 

6 DISCUSSION 

The results show that the introduced deep learning models 
all perform similarly to the machine learning models 
introduced in the previous work. In terms of statistical tests, 
significant differences were only detected between the 
worst and best performing models when considering the 
test R2-score. Therefore, we can conclude that the 
presented deep learning models are all similarly suited for 
industrial load forecasting regardless of the specific 
architecture.  

However, some differences were detected in the 
computation time. Stateless LSTMs seem to require less 
computation time than stateful LSTMs with similar 
forecasting accuracy. A possible reason is the higher 
complexity of stateful LSTMs since they retain their internal 
state over longer time periods. In the presented use case, 
the stateful LSTM could have been expected to outperform 
the stateless LSTM regarding the dressing operation that 
has a long-term time dependency. This pattern, however, 
was not learned by the stateful LSTM. Therefore, stateless 
LSTMs seem sufficient and more efficient for the task. 

Compared to the pure LSTM networks, the CNN-LSTM 
networks show a slightly better forecasting accuracy and 
significantly shorter computation time. A likely reason for 
the shorter computation time is the reduction of the time 
dimensionality performed by the CNN max pooling layers, 
greatly reducing the number of input time steps to the LSTM 
layers and thus reducing the time unfolding operations 
needed for training. Therefore, the combination of CNNs 
and stateless LSTMs seems to be more efficient for the task 
than pure LSTMs. 

Regarding the attention mechanism, no statistically 
significant improvement of the forecasting accuracy or 
computation time can be noted. Attention3D after LSTM 
slightly improves the accuracy and is the best-performing 
model architecture in this work. However, further research 
is needed if it reliably improves the forecasting accuracy. 
Attention3D before LSTM and attention2D seem to have no 
or even a negative effect on the forecasting accuracy. 

A closer look at the hyperparameter tuning results reveals 
that both best performing models have similar 
hyperparameters. In particular, an input sequence of 100 
time steps seems sufficient for the task, combined with a 
large batch size of 950. The splitting of input sequences into 
different CNNs was neglected even in CNN-LSTM 1 by 
setting the number of sub-sequences to 1. That means that 
CNN-LSTM 2 is likely better suited for the task. The LSTM-
layers were set to 1 in each case, which means that a small 
LSTM is sufficient following the CNN-operations. That has 
likely additional positive effects on the computational 
efficiency. The introduced dropout-layer after the LSTMs 
was apparently not needed since the dropout rate was set 
to 0 in both models. Possibly, the max pooling layers within 
the CNN and the early stopping mechanism already provide 
enough regularization, since no significant overfitting could 
be observed especially when comparing the train and test 
RMSE of the best models. Finally, the activation function of 
the output was not selected to be linear, which could be 
further examined in future research. Intuitively, in 
regression, the output activation should be linear since the 
target is continuous. However, an activation like sigmoid 
could lead to a more stable prediction since extreme 
prediction values are scaled down by the sigmoid 
transformation. 

The transfer of the best model architecture to MT2 yields 
that the proposed deep learning architecture may be more 
robust and able to cope with less data than the models 
proposed in the previous work, since significantly less data 
was available for MT2. However, more tests regarding the 
amount of data and the transferability to other data sets are 
needed to verify this hypothesis. 

Regarding limitations of the study and methodology, it 
should be noted that no cross-validation was performed 
during the experiments, which could possibly result in 
overfitting the test data sets. When looking at the train and 
test RMSEs, however, this seems unlikely. Furthermore, 
the hyperparameter space was set mostly by using the 
choice-function in NNI. Using probability distributions, e.g. 
quniform or lognormal, could further improve the 
hyperparameter optimization by providing more context to 
the Bayesian optimization algorithm. Additionally, the effect 
of computation time should be studied more carefully in 
future work by recognizing and eliminating external 
influencing factors like different hardware or parallel 
processes.  

The presented models still need improvement to enable 
demand response measures. Especially the forecasting 
horizon should be increased to at least 15 minutes to allow 
for sufficient reaction time for the intraday electricity market 
[Buhl 2019]. The effect of the forecasting accuracy on the 
demand response measures needs to be examined further 
to allow for a well-founded assessment. 

7 CONCLUSION 

This paper presents a deep learning approach based on 
CNN and LSTM to forecast the very short term electric load 
of machine tools. Novelties of the presented work 
compared to previous studies are the application of deep 
learning methods to industrial load forecasting applications 
and especially the use of CNNs instead of a traditional 
feature engineering and selection process. We can 
conclude that CNNs are a good alternative to the complex 
feature preprocessing process, since the results are at least 
as good or better than those in the previous work. However, 
the attention mechanism improved the results just 
marginally. The deep learning architectures including CNNs 

Figure 2 : Ground truth and predictions of CNN-LSTM 2  
att-3 for a time period including four production cycles and 

the following dressing operation in the test set. 
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and stateless LSTMs prove computationally efficient and 
may be more robust and transferable to different data sets 
than previously proposed machine learning models. 

Future research is still needed to verify the results 
especially concerning the computation time, to examine the 
transferability of the models, and to test the influence of the 
data set size. 

Table 5 : Results of the main experiments with five trials each with the best result highlighted in bold. The computation 
time depends on hardware and parallel processes and therefore needs further investigation. 

* Train-test split was 75%/25% in previous work, 70%/30% in this work 

Table 6 : Significant results of the post-hoc Holm test of R2-values including the rankings found by the previous Friedman 
test. An adjusted p-value of <0.05 indicates a statistical difference between two samples. A higher ranking indicates a 

higher R2-score. 

Table 7 : Results of the transfer of the best models to a different machine tool, five trials each. 

* Train-test split was 75%/25% in previous work, 70%/30% in this work
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