CAD-BASED PATH PLANNING FOR LINE LASER SCANNING OF CURVED SURFACE

Abstract

On-machine measurement by a line laser scanner has a great potential in machining large complex components in aerospace and automation applications. This paper proposes a novel approach for path planning of measuring curved surfaces in a 5-axis machine tool, which takes scanning overlap, visual angle, and working distance into consideration. A conformal mapping algorithm is employed to transform a three-dimensional (3D) mesh surface to a 2D parametric plane. The shortest equidistant paths calculated in the 2D plane are transformed into smooth collision-free scanning paths in the 3D surface. The experiments verify that this method can improve the efficiency by 21.4% and the accuracy by 24.9%.

Recommended articles

EXPERIMENTAL ANALYSIS OF THE ETCHING PROCESS FOR VALIDATION OF NON-CONVENTIONAL SLOT MACHINING IN AERO ENGINE COMPONENT MANUFACTURING

C. Baier, M. Weigold
Keywords: Wire EDM | Turbine Discs | Nickel-Based Alloys | Electrolytical Etching

INVESTIGATION OF LUBRICATING OILS FROM RENEWABLE RESOURCES FOR CRYOGENIC MINIMUM QUANTITY LUBRICATION

T. Meier, D. Gross, N. Hanenkamp
Keywords: CMQL | milling | turning | bio-based oils | carbon dioxide

INSTANTANEOUS PARAMETER IDENTIFICATION FOR MILLING FORCE MODELS USING BAYESIAN OPTIMIZATION

B. Schmucker, M. Busch, T. Semm, M. F. Zaeh
Keywords: machining simulation | parameter identification | optimization | data analytics

INCREASING PERFORMANCE AND ENERGY EFFICENCY OF A MACHINE TOOL THROUGH HYDROSTATIC LINEAR GUIDEWAYS WITH SINGLE DIGIT MICROMETRE FLUID FILM THICKNESS

M. Fritz, M. Groeb
Keywords: hydrostatic | guideway | Machine tool | precision | microgap | Energy Efficiency