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Abstract 

Gantry stages, consisting of two parallel acting drives, are a well-known example, where a significant 
interaction between all control systems’ in- and outputs is present due to structural coupling. Stability 
issues and therefore the limitation of the bandwidth of the position control can be a consequence of this 
effect. The adjustment of the systems mechanical properties using compliant joints, as well as the 
implementation of centralised control strategies are two possible approaches to overcome these issues 
and to improve the dynamic and static behaviour of the stage. Frequency domain methods for 
multivariable systems are used for controller tuning to consider properties like the controls’ time delay 
and high frequency mechanical eigenmodes, which are hard to model otherwise. 
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1 INTRODUCTION 

A high productivity as well as a high product quality are 
fundamental demands of recent production systems. 
Accordingly, motion systems of machine tools need to 
achieve a high control bandwidth, a robust stability 
behaviour and a low sensitivity to process forces. A well-
known concept, which is able to fulfil these requirements, is 
the gantry-stage, consisting of two parallel acting drives. In 
particular, linear direct drives maximise the potential of 
motion dynamics, since no mechanical transmission is 
necessary within the drivetrain. However, with the use of 
two individual drives for one degree of freedom (DOF), the 
potential of the concept may not be fully exploited. One 
reason for this is the dynamic interaction of the drives and 
their control loops, which arises due to the stiff mechanical 
coupling of the stage. 

One way to solve this problem is to increase the DOF of the 
motion system by unlocking the rotation about the vertical 
axis (yaw angle). Including compliant joints is an 
advantageous solution for this purpose. Because of low 
friction and the absence of backlash, such elements 
achieve a high accuracy in a small range of motion 
[Howell 2013]. Consequently, many investigations about 
the development of high-precision positioning stages with 
up to six DOFs utilising compliant joints have been 
published (see e.g. [Kim 2005], [Tian 2010], [Kang 2012]). 

Synchronisation strategies using cross coupled 
(centralised) control on gantry-type motion systems is well 
known in the state of the art (compare e.g. [Ishizaki 2013] 

and [Li 2015]). These strategies include a great effort of 
modelling and parameter identification, since 
parameterisation and tuning of the controller depends on 
specific system parameters. To overcome the issue of 
parameter uncertainties, robust approaches have been 
developed as well (e.g. [Ma 2019], [Hu 2010]). 

In contrast, the usage of frequency response functions 
(FRFs) offers efficient methods to tune controller gains, 
without the need for a parameterised model. Various 
methods for analysing and designing control systems using 
FRFs are known from the state of the art [Skogestad 2005]. 
Doyle [Doyle 1981] gives a good overview of strategies to 
improve the quality of a multivariable control system like the 
usage of singular values of representative FRF matrices. 

Gordon uses loop shaping methods to improve the motion 
dynamics of a planar (XY) gantry system including an 
additional active damping function [Gordon 2012]. Peukert 
[Peukert 2019] uses the Independent Modal Space Control 
(IMSC) for the active damping of a gantry stage. FRF 
methods are used for the tuning and the analysis of the 
control system. In previous work [Poehlmann 2020], gantry 
stages with varying rotational stiffness were compared and 
the positive effect of compliant joints regarding stability and 
control bandwidth was shown while using a classical 
cascaded control scheme. One drawback of the concept of 
compliant joints is, that the reduction of the rotational 
stiffness leads to a higher sensitivity to process loads, since 
external torque cannot be countered by the linear guides. 
In this study, compliant joints are combined with a simple 
centralised decoupling control strategy, to further improve 
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the dynamic system behaviour. To show the effect of the 
system properties in combination with centralised and 
decentralised control strategies, the stage equipped with 
compliant joints is compared to the one without those. 

In this contribution, frequency domain methods are used 
(see Section 4) to tune the controllers offline and  calculate 
stability margins as well as closed loop behaviour of the 
whole system. For this purpose, the Nyquist stability 
criterion for multivariable systems is applied (see 
[MacFarlane 1977]). With the use of measured FRFs for the 
controller design, system properties like time delay and 
resonance peaks at high frequencies, can be considered. 
In contrast, this would lead to a notable increase of 
modelling and tuning effort using parametric approaches. 
The tuning of a single drive using FRF methods, is already 
common in industrial applications. In general, an extension 
to a multivariable approach would offer a robust und widely 
automated method for controller tuning of mechanically 
coupled drive arrangements. 

2 EXPERIMENTAL SETUP 

The test rig is depicted in Fig. 1. It consists of ironless linear 
direct drives (Tecnotion UXX6N) with fixed magnet yokes 
and absolute linear measurement systems (Heidenhain 
LIC4117) with an accuracy of ±5 µm and a resolution of 
1 nm. The entire motion system consists of four drives, 
which are carried on two guiding rails (Hiwin HG15) with a 
cross-axial distance of 770 mm. The drives are connected 
by bridge plates to form two gantry stages. One of them is 
used in this investigation. The moving parts of the system 
are mainly made of aluminium to achieve a lightweight 
design of the gantry (29.4 kg). 

 

Fig. 1: The test bed. 

The test rig is controlled by a PC-based real-time system 
(TwinCAT3 by Beckhoff). In order to realise centralised 
control strategies instead of the decentralised cascaded 
scheme, the drives (AX 5206) are running in current control 
mode with a cycle time of 62.5 µs and the velocity and 
position control is performed in the real-time system with a 
cycle time of 125 µs. An EtherCAT fieldbus connects the 
drives and the real-time system. 

In the following investigations, two mechanical 
configurations of the gantry stage are compared. In the first 
configuration, a stiff coupling element connects the bridge 
plate of the gantry with the drives on both sides (see Fig. 2). 
Only high forces lead to a notable yaw rotation and there is 
no usable rotational DOF. Contrary, the stage is insensitive 
to external torque. This characteristic is generally given in 
a design with a short cross-axial distance and a high axial 
distance of the bearings. In the second configuration, the 
rigid coupling elements are replaced by compliant joints to 
adjust the mechanical properties of the stage (see Fig. 3). 

The compliant joints have a low stiffness corresponding to 
rotational motion about the vertical axis. This is achieved by 
the specific arrangement of different flexible link elements, 
pointing to a common centre. The flexible links are 
designed as stacks of multiple thin spring steel sheets in 
order to achieve a low stiffness of the desired DOF while 
maintaining high stiffness of the other DOFs. As a result, a 
yaw-rotation θ can be realised by a relative displacement of 
the linear drives while only a low force is required. However, 
a system without joints can also have the characteristics of 
a small rotational stiffness. This is the case, for example, if 
the bridge spans over a wide cross-axial distance or has a 
high moment of inertia. A more detailed description of the 
designed compliant joints is given in [Poehlmann 2020]. 

 

Fig. 2: Gantry stage with rigid coupling elements. 

 

Fig. 3: Gantry stage with compliant coupling elements. 
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2.1 System Identification 

The nonparametric model of the system in the frequency 
domain is given by 

(
𝑣1(j𝜔)
𝑣2(j𝜔)

) = (
𝐺11(j𝜔) 𝐺12(j𝜔)
𝐺21(j𝜔) 𝐺22(j𝜔)

) ∙ (
𝑓1(j𝜔) + 𝑑1(j𝜔)
𝑓2(j𝜔) + 𝑑2(j𝜔)

),  

𝒗(j𝜔) = 𝑮(j𝜔) ∙ (𝒇(j𝜔) + 𝒅(j𝜔)), (1) 

with the vectors of input forces 𝒇(j𝜔), the disturbances 

𝒅(j𝜔), the output velocities 𝒗(j𝜔) and the two-by-two matrix 

of FRFs 𝑮(j𝜔). The velocities are obtained by the derivation 

of the linear encoder signals in the drive units. The forces 
are obtained by multiplying the motor current with the 
nominal force constant of 124 N/A. 

The system is excited by only one drive at a time, using 
pseudo random binary sequence (PRBS) signals fed 

through a low pass filter (time constant: 𝑇 = 1 (1000𝜋) s⁄ ). 

The FRFs of the Matrix 𝑮(j𝜔) are then calculated by 

correlation analysis (see e.g. [Bohn 2016]). In the 
identification experiment, cascaded velocity and position 
controllers with a low bandwidth (achieved by low gains) are 
used to keep the stage in continues motion to avoid issues 
like stick-slip arising from static friction. 

 

Fig. 4: System FRFs of both configurations. 

Fig. 4 shows the resulting FRFs of the rigid and the 
compliant configuration. Due to the symmetry of the 
system, the illustration of 𝐺12(j𝜔) and 𝐺22(j𝜔) is omitted. 

Because of the integral character of the rigid body motion, 
each FRF consists of a decreasing amplitude with a ratio of 
0.1 per frequency decade and a phase of -90° at low 
frequencies. The first and highest resonance peak of each 
system is characterised by the opposite directed motion of 
the drives. This is indicated by the relative phase shift of 
180° at the corresponding frequency value. With the use of 
the compliant joints, this first eigenfrequency is shifted from 
approximately 168 Hz (compliant configuration) to 16 Hz. 
Other resonance peaks at higher frequencies result from 

the dynamic deformation of other mechanical parts like the 
bridge plate and are not analysed in detail. The increasing 
phase shift for raising frequencies can be represented by a 
static time delay of approximately 0.875 ms for both 
configurations. 

3 CONTROL STRATEGIES 

In this paper, two control strategies are applied to both the 
rigid and the compliant configuration. The parameter tuning 
of both strategies is done iteratively with the use of the 
matrix of the measured FRFs (see Eq. (1)). If the system is 
identified once, the expected closed loop characteristics of 
arbitrary controllers and parameter sets can be calculated. 
This includes e.g. stability margins or quality criterions like 
load sensitivity functions. A requirement for this method is 
the linearity of the system at the operating point. The overall 
control schemes are depicted in Fig. 5. In addition to the 
control strategies described in the following sections, a low 
pass filter with a cut off frequency of 1000 Hz and individual 
notch filters (for frequencies above 1000 Hz) are used to 
avoid stability issues at higher frequencies (see “filter” in 
Fig. 5). The filters are considered to be a part of the system 
𝑮(j𝜔) and will be omitted in the remainder of this study. 

 

Fig. 5: Schemes of the velocity and position control. 

3.1 Decentralised control strategy 

The first strategy uses a classic decentralised scheme with 
individual cascaded position (P) and velocity (PI) controllers 
for both drives. Each of the controllers is set independently 
by tuning the parameters of the velocity and position control 
loops one after another. In practice, this strategy is 
beneficial because the tuning procedure can be used at the 
machine without any knowledge about the system 
parameters. However, if there is a strong coupling between 
the drives (esp. mechanical coupling), the parameter set of 
one control loop will affect the stability margin of the other 
and an acceptable closed loop behaviour may be difficult to 
be found. Since the system in this example is mainly 
symmetric, the gains are set equally to the controllers of 
both drives. The procedure of the decentralised strategy 
starts with the tuning of the velocity loop gain 𝐾v, while 𝐾I 

and 𝐾p are set to zero. The control law of the decentralised 

velocity controller can be written as: 

𝑹v,DC(j𝜔) = (
𝐾v 0
0 𝐾v

) + (
𝐾I 0
0 𝐾I

) ∙
1

j𝜔
 , (2) 

where 𝐾I = 𝐾v 𝑇N⁄ . The gain 𝐾v is raised up until the critical 

value is reached where the output starts to oscillate. This 
point can be detected by the use of the eigenfunctions of 
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the open loop, shown in Section 4.1. To provide adequate 
gain margins, the critical gain value is divided by two. The 
time constant 𝑇N is set to 10 ms in each case. This 

parameter is not varied in this paper, to keep the different 
configurations and control strategies comparable. In the last 
step, the position control is added to the closed velocity 
loop: 

𝑹p,DC(j𝜔) = (
𝐾p 0

0 𝐾p
) . (3) 

In the tuning procedure, the gain 𝐾p is raised until the 

response magnitude of the closed loop slightly hits the 
value of 1 with no overshoot. Section 4.2 describes this 
aspect in detail. 

3.2 Centralised control strategy 

The second control strategy uses transformation matrices 

𝑻y = (
0.5 0.5
0.5 −0.5

)  and  𝑻f = (
1 1
1 −1

) , (4) 

to split the system in a translational and a rotational DOF: 

(
𝑦tra

𝑦rot
) = (

0.5 0.5
0.5 −0.5

) (
𝑦1

𝑦2
) = 𝑻y ∙ 𝒚. (5) 

Both the translational and the rotational DOF are controlled 
with a cascaded velocity and position controller, similar to 
the decentralised strategy. A main advantage of the new 
coordinates 𝑦trans and 𝑦rot is that the two controllers can be 

tuned independently and individual gains are used for the 
translational and rotational motion. The tuning of each of 
the controllers is done with the same procedure as in the 
decentralised case. First, the gain 𝐾v of the velocity loop is 

raised to the critical value, while integral gain and position 
control are inactive. Subsequently, the time constant 𝑇N is 

set to a value of 10 ms. The control law of the velocity 
controller is given by: 

𝑹v,CC = 𝑻f ∙ ((
𝐾v,tra 0

0 𝐾v,rot
) + (

𝐾I,tra 0

0 𝐾I,rot
) ∙

1

j𝜔
 ) ∙ 𝑻y. (6) 

Finally, the position controller 

𝑹p,CC = 𝑻f ∙ (
𝐾p,tra 0

0 𝐾p,rot
) ∙ 𝑻y, (7) 

is tuned to push the response function of the closed position 
loop as close as possible to the value of 1 without passing 
it. This is done with two different response functions 
corresponding to a translational and a rotational reference 
value (see Section 4.2). 

4 RESULTS 

4.1 Velocity control 

Both strategies are based on cascaded control schemes. 
The position control is turned off to analyse the velocity 
control in the first step. The controller gains are tuned using 
the procedures described in Section 3. The stability 
margins of the system are found with the Nyquist stability 
criterion. In case of the multivariable system, the criterion is 
applied to the eigenvalues of the open velocity loop FRF 
matrix 

𝜆𝑖(j𝜔) = eig(𝑮(j𝜔) ∙ 𝑹v(j𝜔)) = eig(𝑮𝑹v(j𝜔)) , (8) 

which are functions of frequency as well (see 
[MacFarlane 1977]). In this example, the gain of the velocity 
loop 𝐾P is raised until one of the functions 𝝀𝑖(j𝜔) reaches 

the magnitude value of 1 at the frequency where a phase 
shift of -180° is present. The parameters that are found for 

all mechanical configurations and control strategies are 
listed in Tab. 1 (half value of the critical 𝐾v is used). 

Fig. 6 and Fig. 7 depict the magnitude and phase of the 
eigenvalues resulting from the open velocity loop with the 
given 𝐾v and 𝑇N. The crossover frequencies, where the 

phase is equal to a value of -180°, are marked with vertical 
dashed lines. In this work the difference between the 
magnitude of the largest eigenvalue and the magnitude 
value of 1 is specified as the gain margin in this work. 

Tab. 1: Gain values of the velocity and position controllers. 

Config-
uration 

control 
𝐾P in 

A/(m/s) 

𝑇N in 

ms 

𝐾p in 

1/s 

rigid DC 28.5 10.0 108.0 

compliant DC 58.5 10.0 200.0 

rigid CC trans. 75.5 10.0 250.0 

compliant CC trans. 90.0 10.0 237.0 

rigid CC rot. 24.5 10.0 470.0 

compliant CC rot. 55.0 10.0 247.0 

With the tuning strategies described in Section 3, all 
systems show approximately the same gain margins. The 
value is slightly smaller than 0.5, since the shape of the 
eigenvalues is changed when the integral part (using 𝑇N) is 

added to the controllers. Using the decentralised strategy 
(see Fig. 6), the second eigenvalue 𝜆2(j𝜔) (both 

configurations) shows a lower magnitude than the first 
eigenvalue 𝜆1(j𝜔) at the phase crossover frequency. When 

the centralised strategy is applied, 𝜆1(j𝜔) and 𝜆2(j𝜔) of one 

configuration are nearly equal at this frequency. With the 
individual tuning of translational and rotational controller, 
both eigenvalues are shifted close to the same stability 
margin. 

 

Fig. 6: Open loop eigenvalues of the decentralised control 
(DC) strategy. 
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The gain values given in Tab. 1 show a difference between 
the rigid and the compliant configuration. If the same control 
strategy is used, the resulting gain 𝐾v of the compliant 

configuration is always higher than the corresponding gain 
of the rigid configuration. The reason is the resonance peak 
of the mechanical eigenfrequency, which reduces the gain 
margin at the phase crossover frequency of the eigenvalue. 
With compliant elements, the first mechanical 
eigenfrequency is shifted to a lower value, where 𝜆1(j𝜔) is 

dominated by higher magnitudes and phase margins (see 
[Poehlmann 2020]). 

 

Fig. 7: Open loop eigenvalues of the centralised control 
(CC) strategy. 

The transfer behaviour of the closed velocity loop is given 
by the matrix 𝑮v(j𝜔): 

𝒗(j𝜔) = 𝑮v(j𝜔)𝒗ref(j𝜔) (9) 

𝑮v(j𝜔) = (𝐈 + 𝑮𝑹v(j𝜔))
−1

𝑮𝑹v(j𝜔). (10) 

The transfer functions shown in Fig. 8 represent the 
average velocity of both drives in case of symmetric 
reference values (translational motion): 

 𝑮v,t(j𝜔) = (0.5 0.5) ∙ 𝑮v(j𝜔) ∙ (
1
1

). (11) 

To achieve a high accuracy and dynamic of the control 
system, the FRF needs to be close to the magnitude of 1 in 
a wide frequency range. In the given example, the masses 
of both configurations are approximately equal. Using the 
DC strategy, the behaviour of the translational motion is 
mainly affected by the controller gain. Therefore the 
compliant configuration achieves a higher bandwidth, 
compared to the rigid configuration. Applying the CC 
strategy, the dynamic behaviour is further improved. In this 
case, the difference between rigid and compliant 
configuration is very small, since the joints mainly affect the 
rotational but not the translational characteristics of the 
system. Since individual controllers are used for 

translational and rotational motion (DOFs), the resonance 
peak of the lowest mechanical eigenfrequency of the rigid 
configuration has no remarkable effect on the translational 
control loop. 

 

Fig. 8: Magnitudes of the closed loop response of the 

velocity control to symmetric reference values |𝐺v,t(j𝜔)|. 

4.2 Position control 

The position controllers of all configurations and strategies 
are tuned in consideration of the closed loop FRF 
corresponding to a translational (symmetric) position 
reference value given by: 

𝐺y,t(j𝜔) = (0.5 0.5) ∙ 𝑮y(j𝜔) ∙ (
1
1

), (12) 

where 𝑮y(j𝜔) is the full response matrix of the closed loop: 

𝒚(j𝜔) = 𝑮y(j𝜔)𝒚ref(j𝜔), (13) 

𝑮y(j𝜔) = (𝐈 + 𝑮v𝑹p(j𝜔))
−1

𝑮v𝑹p(j𝜔). (14) 

In case of the centralised control, the response to a 
rotational reference value 

𝐺y,r(j𝜔) = (0.5 −0.5) ∙ 𝑮y(j𝜔) ∙ (
1

−1
), (15) 

is used additionally, to tune the gain of the rotational 
controller. Tab. 1 lists the gains 𝐾v of all setups and Fig. 9 

displays the magnitudes of the resulting response to a 

translational reference motion |𝐺y,t(j𝜔)|. As a result of the 

improved bandwidth of the decentralised velocity controller, 
the bandwidth of the position control is improved as well, if 
compliant elements are used instead of rigid ones. When 
the CC strategy is applied, an even larger control bandwidth 
is achievable and, in analogy with the velocity control, there 
is only a negligible difference between the two mechanical 
configurations. 

Fig. 10 depicts the closed loop response to a rotational 
reference motion according to (15). Using the rigid 
configuration and the classical control scheme (DC) the 
rotation cannot be controlled. This is indicated by the 
magnitude of the FRF, which is far below the value of 1 in 
the full frequency range. Using the centralised control 
strategy, the magnitude is raised, but does not lead to an 
acceptable transfer function. This is a result of the high 
rotational stiffness of the bridge, which acts against the 
actuators. However, this is no issue, if a rotational DOF is 
not required. In this case, the deactivation of the rotational 
controller can be advantageous to reduce the actuator 
forces and power consumption. 
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Fig. 9: Closed loop response of the position control to 

symmetric reference values |𝐺y,t(j𝜔)|. 

 

Fig. 10: Closed loop response of the position control 

|𝐺y,r(j𝜔)| to a rotational reference motion. 

4.3 Load Response 

This section addresses the sensitivity of the different 
systems to external loads. The matrix 𝑮d(j𝜔) represents the 

response of the output to a disturbance vector 𝒅(j𝜔): 

𝒚(j𝜔) = 𝑮d(j𝜔)𝒅(j𝜔) = 𝑮d(j𝜔) (
𝑑1(j𝜔)

𝑑2(j𝜔)
) . (16) 

Here 𝑑1 and 𝑑2 are assumed to be loads that act in the 
same way as the forces of the actuators. In analogy with the 
previous sections, the matrix 𝑮d is split into a translational 

motion response to a symmetric load (𝑑1 = 𝑑2): 

𝐺d,t(j𝜔) = (0.5 0.5) ∙ 𝑮d(j𝜔) ∙ (
1
1

), (17) 

as well as a rotational response to opposite directed loads 
(𝑑1 = −𝑑2): 

𝐺d,r(j𝜔) = (0.5 −0.5) ∙ 𝑮d(j𝜔) ∙ (
1

−1
). (18) 

The magnitudes |𝐺d,t(j𝜔)| of the different systems are 

illustrated in Fig. 11. The graphs show a reduction of the 
load sensitivity when higher gains are used in the 
controllers. A load that acts mainly in the direction of the 
motion axis has to be countered by the drives and 𝐺d,t(j𝜔), 

as a consequence, is mainly affected by the performance 
of the control. The magnitudes of 𝐺d,r(j𝜔), which indicate 

the sensitivity to opposite directed loads (equivalent to a 
torque), show the disadvantage of the compliant 
configuration (see Fig. 12). Torque, which is acting on the 
bridge, have to be countered by the drives. This leads to a 

higher load sensitivity (DC and CC) in the lower frequency 
range (< 100 Hz) compared to the rigid configuration where 
the torque act against the linear guides. Consequently, this 
load scenario will lead to a higher power consumption when 
the compliant configuration is used. On the contrary, the 
rigid configuration (both CD and CC) show a significant 
raise of the magnitude at a frequency of about 220 Hz, 
which is not present in the compliant configuration. Even if 
the magnitude of the load response is lower in the rest of 
the frequency range, this resonance peak can lead to 
stability issues in an application, especially like milling. 

 

Fig. 11: Translational load response |𝐺d,t(j𝜔)|. 

 

Fig. 12: Rotational response to opposite directed loads 

(torque) |𝐺d,r(j𝜔)|. 

5 SUMMARY 

This paper presents experimental investigations of a gantry 
stage driven by linear direct drives. In the standard 
configuration, the bridge of the stage is connected with the 
two drives by rigid elements. It is shown, that the control 
bandwidth of the commonly used decentralised controllers 
(DCs) is reduced, if the first mechanical eigenfrequency is 
close to the phase crossover frequency of the open loop 
eigenvalues. To improve the dynamic behaviour of the 
stage, the rigid coupling elements are replaced by 
compliant joints, which lead to a reduction of the first 
eigenfrequency and as a consequence, to higher gain 
margins. Furthermore, a centralised control strategy with a 
static transformation of the position and force values (CC) 
is applied to both configurations as an alternative to the 
decentralised strategy. All controllers are implemented 
utilising hardware, which is commonly used in industrial 
applications. The design of the motion stage in this example 
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is simple. In a more practical case, where more DOFs are 
included, the transformation of the centralised control 
needs to be adapted to the variable structure. 

Both the replacement of the rigid elements and the usage 
of the decentralised control strategy lead to an 
improvement of the resulting control bandwidth of the 
motion stage. The decision which of the concepts should be 
used, depends on more aspects, like the question if a 
rotational DOF is required (e.g. to compensate angular 
errors of the bridge) or if a centralised control strategy can 
be realised with the available hardware. 

If the rotational DOF is not necessary and the rigid 
configuration is used, it is possible to use the CC strategy 
to improve the dynamic behaviour of the translational 
motion. Due to the high rotational stiffness of the rigid 
configuration, the rotational controller can be deactivated to 
reduce the occurring forces and power consumption. 

The combination of the compliant configuration and the 
centralised control strategy results in the largest motion 
bandwidth of both the translational and the rotational DOF. 
The purpose of the tuning procedure, exemplary used in 
this investigation, is to obtain comparable results for the 
different strategies. The procedure can be adapted to meet 
further demands, like a reduction of the gain values to 
improve stability margins, if a lower control bandwidth is 
sufficient. Another possibility is the optimisation of the 
disturbance response of the system. 

Measured FRFs are used to analyse the characteristics of 
the multivariable systems and the control strategies. Using 
these methods, parameter identification is not necessary 
and no additional measurement systems are required. 
Therefore, frequency domain methods for multivariable 
systems are well suited for industrial applications, when the 
common approaches for individual drives do not fulfil the 
requirements. 

However, frequency response methods are not suitable for 
nonlinear systems in the first place. This is the case, for 
example, if an orthogonal axis with a movable mass is 
added to the gantry stage. In this case, the characteristics 
of the system change with the feed drive position. If the 
variation of the system is negligible for a small change of 
the position, the analysis can be done for different working 
points. This aspect will be part of future investigations. 
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