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Abstract  

Monitoring the tool condition of machining processes is important but challenging. Several automated tool 
condition monitoring solutions are available, but often not used due to existing restrictions or 
disadvantages. A new approach can be the detection and measurement of tool conditions analyzing the 
sound of an air jet impingement on tools. Due to the availability of compressed air as a working and 
cleaning medium for many processes, this approach can be used for various condition monitoring and 
measuring tasks. In this paper the procedure and its functionality are first presented on simple shapes 
and then tested on the tool wear of inserts. 
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1 INTRODUCTION 

The evaluation of the performance of a machining process 
depends on the quality of the workpieces [Rehorn 2005] 
and the productivity [Liu 2019]. The cutting tool as the link 
between machine and the workpiece has a major influence 
on the process performance. In this context, tool wear plays 
a significant role. From the quality perspective, the tool 
state influences the workpiece quality. From the economical 
perspective, it is estimated that up to 20 % of the machine 
downtimes are attributed to failures of the cutting tools 
[Vetrichelvan 2015], [Bhattacharyya 2007]. As a result, the 
tools are changed early, often before the actual end of their 
life is reached. This leads to potential savings that can be 
achieved by using the full capacity of the tool life. It is 
estimated that costs of the tools and their changes account 
for 3-12 % of the processing costs [Zhou 2018]. 

All these aspects describe the need to monitor the condition 
of the cutting tools and replace them in time before failures 
occur and also try to use them as long as possible to reduce 
the tool replacement costs [Aliustaoglu 2009]. In practice, 
several approaches are common for Tool Condition 
Monitoring (TCM) with different advantages and 
disadvantages. 

In this paper, a new approach for TCM with a wide range of 
applications is introduced. The measurement is based on 
the evaluation of an impingement sound that occurs when 
an air jet hits a tool. At the beginning of this paper, the state 
of the art is presented with the relevant work according to 
the new approach. In the practical part of this work, at first, 

simple geometric objects have been tested to examine its 
functionality. After that, the potentials to measure the tool 
wear is depicted by tests on cutting inserts. In the closing, 
the results are discussed and further research is described. 

2 STATE OF THE ART 

TCM is a method to monitor the tool state to reduce 
production losses. The states can be classified into tool 
wear, breakage, and chipping. A TCM system consists of 
two parts, the software and the hardware. Both are 
necessary to build a TCM application and to integrate it into 
the machine tool [Siddhpura 2013]. Sensors are used to 
collect information about the wear condition of the tool and 
pass this information on in the form of data so that decisions 
can be made [Kuntoğlu 2020]. In the literature, TCM 
systems can be categorized as direct and indirect methods 
as well as in continuous (online) and intermittent (offline) 
[Dimla 2000], [Siddhpura 2013], [Ostasevicius 2020]. The 
definition of direct and indirect methods in the field of TCM 
differs from the field of general measurement technology. 
In the literature of measurement technology, direct methods 
are described as methods in which the measured value is 
obtained by direct comparison with a reference value of the 
same measurand [Puente León 2019]. Indirect methods are 
described as methods in which the measured quantity is 
traced back to other measurands via physical relationships 
and determined from these [Puente 2019]. In the following, 
the division of TCM systems is briefly explained using the 
more appropriate terms online and offline. 
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With offline methods it is not possible to detect the wear 
when the tool is in cutting mode [Dimla 2000], [Liu 2019], 
[Siddhpura 2013]. These methods are based on direct 
sensing to the tools and can be done e.g. with optical laser 
beams, tactile devices, proximity sensors or the workpiece 
electrical resistance. The offline methods have advantages 
in the accuracy of measuring, but environmental conditions 
such as chips and cutting fluids can influence the 
measurement process negatively.  

Online measurement has its benefits in taking the 
measurement while the tool is in contact with the workpiece. 
There is no machine interruption during the measurement. 
The desired measurand of the tool state is traced back to 
physical relationships or a variable that correlates to it. This 
method uses factors that change depending on the state of 
the tool. Examples for these factors are cutting force, 
acoustic emission (AE), airborne sound, temperature, 
displacement, spindle power, torque or strain [Dimla 2000]. 
The challenge of this method is the individual calibration for 
each cutting process and process adaptation. This is 
because the process as well as their settings such as 
speed, feed rate and depth of cut influence the sensor 
signals. Often, the measurement accuracy of offline 
methods is higher than that of online methods [Siddhpura 
2013], [Silva 1998]. Their advantage is the usage of existing 
sensor signals. Also new and machine-independent 
sensors, or Internet of Things (IoT) Devices can be 
implemented to measure various signals [Ostasevicius 
2020]. Especially cutting force and AE signals are 
appropriate to measure tool wear indirectly. Table 1 depicts 
a qualitative comparison between offline and online 
methods of TCM. Commonly, the operator is responsible to 
monitor and determine the final tool state based on visual 
impressions, the acoustic noise of the process and the 
application of gauges. These types of diagnostic rely on the 
experience of the operator and is highly subjective.  

Tab. 1: Comparison between the TCM methods according 
to [Bhuiyan 2014] and [Siddhpura 2013] 

 offline online 

accuracy + - 

robustness - + 

machine 
interruption 

- + 

calibration effort + - 

 

The new measurement method is based on the evaluation 
of an impingement sound which occurs when an actively 
generated air jet is directed towards an object. It is known 
that the characteristics of a flow field are changing 
depending on the surface. For example Nguyen et al. 
describe the effects of nozzle pressure ratio and nozzle-to-
plate distance to flow field characteristics of an under-
expanded jet impinging on a flat surface [Nguyen 2019]. 
Inspired by bats Hwang et al. reconstructed the shape of 
the simple objects using machine learning (ML) and 
ultrasonic sound signals which are actively sent [Hwang 
2019]. 

In the field of manufacturing and machining, the currently 
known works describe the process of using airborne sound 
signals that occur during the operation of the machines and 
processes themselves [Alzahrani 2018], [Vetrichelvan 
2015], [Mühlbauer 2020]. Using the resulting sound of an 
air jet in the field of manufacturing, Kamnis et al. introduces 
an approach for monitoring a thermal spray coating process 

with ML techniques to predict the coating result [Kamnis 
2019].  

All these approaches depict the potentials and encourage 
the usage of airborne sound for industrial monitoring tasks. 
However, none of these approaches uses an actively 
generated air jet and its impingement sound on objects for 
dimensional measurement in the field of manufacturing. 
Referring to the definition of measurement methods the 
new approach can be classified in the offline method. A 
benefit is that measurement and cleaning from chips and 
lubricant can be done in a single step. The difference to 
known offline methods can be seen in the combination of 
an offline with an online method in one system where the 
process calibration is done automatically. With the usage of 
a microphone as part of this system, the whole machining 
process could be monitored online. 

3 APPROACH 

The target of this paper is to introduce the functionality and 
the potentials of a new measuring principle for the 
application of TCM. The principle is based on the 
impingement sound when an air jet is directed towards an 
object. Different shapes of an object are reflected in 
different characteristics of the sound signals. A ML model 
has been used to apply a prediction of the measurand 
based on the features in the signals of the impingement 
sound. The development is a data-driven procedure. In the 
following, the new approach is presented starting from the 
setup, the data acquisition and its pre-processing, the audio 
signal processing, the feature selection and the 
determination of the height and width using ML techniques. 
By measuring the height and width of a tool the wear can 
be described. Finally, the test of this application on tool 
wear has been done. Figure 1 shows the approach based 
on the procedure of a typical ML project. 

 

Fig. 1: Overview of the approach 

The technique ML has been used because of the expected 
dimensionality of the feature space with its challenge to 
determine the function between the input factors and the 
output, i. e. the complex measurands.  

3.1 Experimental Setup 

For the new approach, primarily two parts are necessary 
which are a microphone and a nozzle. A Renkforce UM-80 
conference microphone with an omnidirectional 
characteristic and a frequency range from 0 to 20 kHz has 
been used. Three different nozzles have been tested (Tab. 
2). The setup for the tests has been implemented in a 
Doosan DNM 500 machining centre (Fig. 2). For the proof 
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of concept of the new approach an object with simple 
shapes, the so-called reference object (Fig. 3), has been 
created. With this object, a variety of data for different 
grades has been generated for determining the height and 
the width. According to TCM height and width are a 
simplification to describe the wear. The object has one side 
with eight steps. The gradation of the steps is 0.5 mm while 
the other sides are even. The aim is to identify patterns in 
the signals of the recorded airflow impingement sound 
which are correlating with the height and width using ML.  

 

Tab. 2: Overview of the tested parameters 

factor  setting  

air 
pressure  3 bar; 7 bar  

nozzle 
diameter 
and type  

round flow: bore dia. 0.2 mm  

round flow: bore dia. 0.5 mm  

flat flow: bore dia. 0.5 mm, angle 30°  
nozzle 
distance  2.5 mm; 5.0 mm  

feed rate  500 mm/min; 1,500 mm/min  

 

Pre-tests with different positions of the microphone in the 
machining centre have been done. The best position has 
been found in vertically alignment with the nozzle (Fig. 2). 

 

 

Fig. 2: Process setup in the machining centre 

With this setup, the signals have been high amplitudes 
without oversteering and the sound signal is constant 
during the nozzle movement.  

 

 

Fig. 3: Reference object with the shapes to determine: (a) 
height, (b) width 

To ensure that the relevant element of the measured object 
can be found, the nozzle and thus the airflow has been 
moved across the measured object. This procedure can be 
imagined as a scanning process to find the relevant points 
of an object which are necessary for the measuring task. In 
the case of tool wear, the maximum wear has to be passed 
by the airflow for the diagnosis. 

To find the best hardware settings experiments have been 
created and the data for the ML procedure has been 
gathered. As input factors variations of air pressure, nozzle 
diameter, nozzle distance and nozzle movement have been 
tested. The experimental variations are depicted in table 2. 
With the pressure at 7 bar, the round flow nozzle of 0.2 mm 
and the nozzle distance of 5.0 mm, the loudest flow noise 
and impingement sound of the air jet has been created. The 
feed rate of 500 mm/min results in more measuring points 
than in the case with a feed rate of 1,500 mm/min. The bold 
settings in table 2 have been used in the following 
investigations. For the following next steps the software 
Python has been used with several libraries. To generate 
and process the audio files the Python libraries Librosa, 
SciPy, NumPy and Pandas has been applied. The plots 
have been created with Matplotlib. For the machine learning 
Scikit-learn has been used. 

3.2 Data Generation and Pre-Processing 

The data generation has been carried out in the machining 
centre to move the nozzles relative to the reference object. 
The compressed air flow noise and its impingement sound 
on the object have been recorded by the microphone using 
a sampling rate of 44,100 Hz. For further signal processing, 
the sound signals has been saved in a wave format file. 
Each file includes all eight steps of a reference object. The 
experiments have been repeated eight times. As a result of 
the manual start of the measuring process and the 
recording, the recorded data varies. To slice the files 
automatically in equal parts for every step of the reference 
object, a fast movement to an initial position of the machine 
has been applied with the NC-program. This leads to a 
characteristic sound pattern at the end of every file. This 
pattern has been used with the function cross-correlation to 
find in all of the recorded files at the end point of every 
experiment. 

3.3 Signal Processing 

To determine the dimensional features height and width of 
the reference object first, the sound signals have to be 
processed to generate spectrums from the raw audio data. 
In the next step, relevant features for height and width must 
be selected in them. Two different procedures have been 
used, one to determine the width and one to determine the 
height.  

As a signal processing technique to determine the height 
the power spectrum density (PSD) has been generated 
using Welch´s method which is used to compare the signals 
power content versus the frequencies. This method is 
independent of the point in time according to the 
impingement sound. An example of the resulting graph is 
shown in figure 4. In the legend upper right, the first line 
(blue) from top to bottom represents the flow noise of the 
air jet without hitting an object. The second line (yellow) 
corresponds to the ambient sound of the Doosan machine. 
The next eight lines correspond to the impingement sound 
of the eight steps of the reference object for one 
experiment. The representations of steps 1 and 8 show 
anomalies in the two peaks compared to steps 2 to 7. This 
could be explained by the different shapes of the steps by 
their outer position. For the determination of the height and 
width only steps 2 to 7 have been used.  

reference

object

nozzle mount

vise

microphone

nozzle

(a) (b)

1
2

3
4

5
6

7
8
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For application to the width of the reference object, the 
beginning and the end of the object must be determined. 
Therefore representations, i. e. their spectrum, of the 
frequency-domain over time have been used to find 
changes related to the outer dimension of the object: 

 Root Mean Square (RMS) 

 Spectral Centroid 

 Spectral Flatness 

 Spectral Bandwidth 

 Spectral Roll-off 

 Zero-Crossing-Rate 

A scheme of the RMS of the width of the eight steps of the 
reference object is plotted in figure 5 for one experiment.  
 

 

Fig. 5: RMS for the width of the eight steps of the 
reference object with the two peaks representing the 

edges 

The presence of two peaks of energy can be seen for the 
eight steps. The left peak is representing the first edge of a 
step and the right peak shows the second edge of a step.  

The described spectrums were used in the next sections to 
find features that correlate with height and width, as well as 
finding the best features for the ML models to build an 
adequate regression to measure the objects.  

3.4 Predicting the width 

In the next step, the width of the reference object has been 
used as the target value of a regression model. For this 
investigation only the six inner steps have been used, due 
to different characteristics of the step 1 and 8 (Fig. 5). As a 
dataset for the following ML procedure 48 audio files, 8 
audio recordings per step, have been created with a 
training-to-test ratio of 80 to 20. 

For predicting the width first, the feature engineering has 
been applied to select features from the spectrums of the 
time-frequency domain referring to section 3.3. To be able 
to use individual values as features, the mean value (MV), 
the standard deviation (SD), and the difference of the 
maxima have been calculated from all six spectrums. The 
18 resulting features have been correlated with the target 
value ‘width’ in a heatmap, shown in figure 6. The lighter the 
boxes in the rightmost column, the higher the correlation 
between the target variable and the input variables on the 
left. A blue color shading indicates a negative correlation, a 
red color shading indicates a positive correlation. The six 
differences of the maxima have not being used due to their 
low correlation (-0.25…+0.5) with the target value width. 
The remaining 12 features have been used for building 
regression models. The best model has been created with 
a polynomial degree of 2 using the features MV of the 
spectral centroid, spectral flatness and spectral bandwidth, 
and the SD of the RMS and spectral flatness. As a result, 
this model has been achieved a mean squared error (MSE) 
value of 0.000140 mm and a maximum deviation of 
0.0186 mm. Table 4 summarises the predictions on the test 
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dataset for the best model for the six steps of the reference 
object and its real values. 

 

Tab. 4: Comparison of the test data set between model 
predictions for width and the real values  

step real value predicted 
value 

deviation 

2 27.03 mm 27.04226 mm 0.01226 mm 

3 27.53 mm 27.53528 mm 0.00528 mm 

4 28.03 mm 28.01812 mm -0.01188 mm 

5 28.53 mm 28.54860 mm 0.01860 mm 

6 29.01 mm 28.99872 mm -0.01128 mm 

7 29.49 mm 29.49671 mm 0.00671 mm 

 

3.5 Predicting the height 

The spectrum referring to Welch has been selected for 
predicting the height. In windows of a range of 1,000 and 
2,000 Hz generated from 0 to 20 kHz, the minima, maxima, 
standard deviation, and mean have been selected as 
features. Additionally, the two global maxima and its 
position have been used. With these features, the 

correlations have been calculated to the target value of the 
height for the six inner steps of the reference object. An 
evaluation has been done with a heatmap. The highest 
correlation has been calculated with the 1,000 Hz windows 
between 6 and 18 kHz using the local maxima. All achieved 
a negative correlation, this means, the higher the step of the 
reference object, the lower the value of the maximum in 
these windows. This effect can also be observed in figure 
4. In the next step, these features have been used to train 
the ML model. For this purpose, the data set of 48 files, 8 
per step, has been divided into 80 % for training and 20 % 
for testing sets. Different linear and polynomial regression 
models have been tested with the features described 
above. The best test results have been achieved with a 
polynomial degree of 2. This model has been a coefficient 
of determination of 0.99, a maximum deviation of the real 
value of all steps of 0.03683 mm and a MSE of 0.00036 
mm. 

The evaluation of this model has been done by the 
determination of the height for each of the six steps of the 
reference object. Table 5 depicts the predicted values of the 
best model with the real value of the steps of the reference 
object and its difference. 

 

10.09.2021Max Mustermann | Thema
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Fig. 6: Heatmap to determine the correlations for the input factors to the target value width 
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Tab. 5: Comparison of the test data set between the best 
model prediction for height and the real value 

step real value predicted 
value 

deviation 

2 27.03 mm 27.05598 mm 0.02598 mm 

3 27.53 mm 27.52823 mm -0.00177 mm 

4 28.03 mm 27.99317 mm -0.03683 mm 

5 28.53 mm 28.53649 mm 0.00649 mm 

6 29.01 mm 29.01915 mm 0.00915 mm 

7 29.49 mm 29.49254 mm -0.00254 mm 

 

3.6 Testing the principle with cutting inserts 

To test the potential of the new approach for TCM, three 
cutting inserts with the wear marks (VBmax) 0 µm, 82 µm 
and 90 µm have been subjected to the same procedure. 
The inserts have been mounted in a tool holder and 
clamped in the machine vise in the machining centre. The 
nozzle has been vertically above the tool. According to 
figure 7a the nozzle has been moved across the inserts with 
the air jet to generate the specific impingement sound for 
each tool state. Beginning from the nose of the inserts with 
an offset of 0.2 mm and a path length of 25 mm the air jet 
has been crossing the tools three times. In total 21 sections 
have been recorded. This procedure is necessary, because 
the exact point of wear in relation to the air jet is not known. 
An example of the wear mark of an insert is depicted in 
figure 7b.  

 

 

Fig. 7: Scheme of the nozzle movement for the cutting 

inserts (a), Example of an insert with VBmax of 90 µ (b) 

According to section 3.5 the highest local maxima within 
1,000 Hz windows between 6 to 18 kHz have been applied 
as features to the 21 sections of the three inserts. 

The dataset has been divided into 80 % training data and 
20 % for testing. All 21 sections have been investigated. 
The best correlation has been achieved with section 19 for 
the inserts. To train the regression model the three inserts 
have been used and tested. With a polynomial degree of 2 
the best model achieved an MSE of 12.358 µm and a 
maximum deviation of the real value of 4.835 µm across the 
three inserts. The result of the test data set is presented in 
table 6. 

Tab. 6: Comparison of the test data set between the best 
model predictions for the wear marks (VBmax) and their real 
value 

real value predicted value deviation 

0 µm 2.320 µm 2.320 µm 

82 µm 77.165 µm -4.835 µm 

90 µm 85.542 µm 4.458 µm 

4 DISCUSSION 

Due to the complexity of aeroacoustics effects and flow field 
characteristics, the functionality of the new approach has 
been depicted using a data-driven procedure. From simple 
shapes to its test on the tool wear of inserts different 
experiments have been applied. The results show the 
potential of measuring the height and width of an object as 
well as the tool wear of an insert. The accuracy and 
robustness of the new approach still need to be compared 
with the state-of-the-art in direct and indirect methods of 
measurement. The tool wear that is relevant for production 
is typically in a range between greater than 0 and 200 µm. 
With the new approach, distinctions of tool wear can be 
made in this range. The measurement accuracy and 
robustness for the application range must be further 
researched and improved. The experiments with the 
reference object have demonstrated that is possible to 
determine the height and width in a deviation between 
0.00177 mm (minimum) and 0.03683 mm (maximum) to the 
real values. The deviations for measuring the width have 
been higher. The reason can be supposed by the different 
clamping because between the steps and the vise there are 
gaps, which could have an influence to the air stream. 

In both investigations, the two outer steps have different 
effects according to the six inner steps referring to their 
spectrum (Fig. 4 and 5). These effects could be caused by 
the shapes of the outer steps, the air jet is only deflected on 
one side.  

The adjustment of the setup has been done qualitatively. 
To achieve better measurement results for all potential 
influencing factors there should a quantitative assessment. 
Especially the nozzle and microphone need further 
investigations to find the best types. The tests have been 
carried out in the audible range; a test in the ultrasonic 
range could be advantageous. Directional microphones can 
also be useful to shield ambient noise.  

The spectrums of the impingement sound present a broad 
sound spectrum with partial peaks. For a more appropriate 
and robust measurement approach, the root cause of the 
peaks and the patterns in the spectrums have to be more 
understood. 

Three nozzles, two with a round flow and one with a flat flow 
have been used with two different settings of the air 
pressure (3 bar and 7 bar). The signals for the three nozzles 
were in a similar range. Further tests must be carried out 
with different nozzle types and air pressure settings to 
specifically influence the impingement sound as well as 
reduce process variations in the sound signals. This 
supports the further development of the new approach into 
a robust and accurate measurement process. 

The feed rate of 500 mm/min achieved better results than 
1,500 mm/min. The reason for this could be that the slower 
the speed, the more measurement points are recorded for 
the same measurement time. The effects of slower feed 
rates still need to be tested. The functionality of the 
approach has been validated with three different inserts of 
the same shape. The deviation of the predicted measurand 
and the real value was in a range between 2.320 µm and 
4.835 µm, demonstrating the potential of using the new 
approach for TCM and measuring tool wear in grades. The 
sample size of the three inserts is very small. Further tests 
with a larger sample size and more increments still need to 
be performed. 

With different measurands of height and width, the 
functionality of the new approach has been tested. Further 
gradations of the measurand and more complex objects 
should be tested. For the regression models, the features 
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have been selected manually, it is expected that with 
automatic feature selection processes the accuracy of the 
models can be improved. Further, the generalization of the 
model still needs to be tested for the unlearned 
measurands.  

5 CONCLUSION 

This paper presents a new approach for TCM and object 
measurement, in which an air jet is directed over an object 
and the resulting impingement sound is used by ML models 
to infer its dimension and condition. The proof of concept 
has been demonstrated first with the application of simple 
shapes to measure their height and width. Second, the 
validation has been done by the tool wear of inserts. This 
new measuring approach can be an alternative to the 
existing TCM methods. For practical use of the new system, 
it must be further developed and compared with current 
TCM methods in terms of robustness and accuracy. 

Benefits can be seen by using compressed air, which is 
available in almost all manufacturing areas. Thereby the 
new approach can easily be implemented. Additional 
application areas can be created with monitoring tasks 
based on the airborne sound with the microphone as part 
of the system.  

This approach offers the potential to provide existing 
applications that use fluid jets, gases and liquids for tasks 

such as cleaning, drying, ionizing, sorting and cooling with 
a monitoring and measurement function. A particular 
benefit is seen in processes where the process result is 
often controlled in a separate subsequent step, such as 
sandblasting and dry ice blasting. 
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