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The paper describes a diagnostic system for 

electromechanical equipment with a decision-making 

block based on a neural network. An asynchronous gear 

drive was used as a control object. Decision making was 

carried out on the basis of a comprehensive analysis of 

vibration data (from the gear drive) and the current 

consumption of the induction motor. Vibration velocity, 

vibration acceleration and current in the phases of the 

stator winding of the drive electric motor are distinguished 

as diagnostic signs. The work shows the possibility of 

increasing the efficiency of diagnostics of 

electromechanical equipment by using complex analysis 

with the use of an intelligent decision-making unit. 

Analysis of the results of the neural network operation 

with the received vibration and current data showed that 

with a smaller number of iterations (training time) (by 

40 %), 97.9 % of correct answers and a lower error value 

(by 12 %) were obtained. 
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1 INTRODUCTION 

With the increasing automation of modern production 

(Industry 4.0), the requirements for its reliability are 

increasing. Therefore, diagnostics (control of technical 

condition) of equipment is becoming the most promising 

and rapidly developing aspect of modern mechanical 

engineering. At present, the theoretical foundations for 

assessing the technical state of electric drive systems are 

insufficiently developed due to the complexity of the 

physical processes occurring in such systems, the 

complexity of the mathematical formalization of the 

description of these processes and defects, with the 

limited measured diagnostic parameters, with 

measurement errors. Due to the above-mentioned 

reasons, there are no descriptions of the regularities 

between the diagnostic parameters and the states of 

electric drives. Therefore, it is not possible to 

systematically solve the problems of diagnosing and 

assessing the residual resource, planning maintenance and 

repair. 

In industry, an asynchronous electric drive is widely used 

due to a number of advantages: high reliability, low cost. 

In engineering practice, it is the use in the field of 

production technology and production technologies such 

as turning, milling, drilling, etc. [Kolesnyk 2020, Sentyakov 

2020, Peterka 2013, Vopat 2014]. The main purpose of the 

research is to improve the efficiency of diagnosing the 

states of an electric drive through the use of an integrated 

approach based on the analysis of information of different 

physical nature (vibration and current consumption) 

generated by individual drive elements. In an electric 

drive, electrical processes occur, which are characterized 

by electric current, and mechanical processes, which are 

characterized by vibration. Therefore, the choice of these 

diagnostic parameters is obvious. 

In work [Stepanov 2014] such diagnostic features as the 

coefficients of the wavelet transformation of vibration 

(using the example of vibration velocity) and the current 

consumed by the drive motor are investigated. As a 

supplement, the vibration velocity spectra are also 

considered. 

The modern level of development of hardware and 

software allows high-quality data collection and 

processing, as well as displaying information and making 

decisions about the state of the equipment. One of the 

promising directions in the development of means for 

monitoring the technical condition of equipment is the use 

of neural networks [Stepanov 2013]. 

The detection and diagnosis of motor faults based on a 

metacognitive network of random vector functional 

relationships is discussed in [Sayed-Mouchaweh 2018]. 

The book [Saad 2019] covers various issues related to 

motor condition monitoring, signal processing and 

conditioning, instrumentation and measurements, faults 

for induction motors failures, new trends in condition 

monitoring, and the fault identification process using 
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motor currents electrical signature analysis. For detection 

of the various faults usually affecting motors, several 

techniques have been proposed and used successfully 

[Isermann 2006, Murcinkova 2013, Costa 2016]. However, 

a good understanding of the mechanical and electrical 

properties of the motor in healthy and faulty conditions 

significantly influences the accuracy and reliability of the 

online condition monitoring methods. 

Methods of diagnostics on fuzzy logic and neural networks 

are considered in [Kuric 2021, Bozek 2021, Nikitin 2020a]. 

It is shown that these methods give good results for 

finding defects in motors. The various issues of diagnostics 

of electric motors are considered in [Peterka 2020, Turygin 

2018, Thomson 2017, Nikitin 2020b, Lekomtsev 2021]. 

Diagnostic methods based on the current signature 

analysis of the electric motor are discussed in [Luo 2017, 

Qiu 2020]. The diagnosis of bearing in electric motors is 

discussed in [Ojaghi 2018, Cui 2017]. Fault-Tolerant 

electrical machines and drives is discussed in [Mustafa 

2017]. The pioneer studies of such systems are fault 

diagnosis studies. 

On the basis of existing research, modern methods of 

diagnostics of the technical condition of electromechanical 

equipment have been studied. The standards for vibration 

control are also considered. It was revealed that the 

following trends can be traced in the field of diagnostics: 

1. Development has received the diagnosis of electric 

drives only for one type of diagnostic parameters 

(vibration of equipment) without taking into account the 

interaction of electrical and mechanical elements of the 

equipment. 

2. Most modern diagnostic systems have the ability to 

collect signals from additional sensors (temperature, 

current, etc.) in addition to vibration sensors. However, 

their use is limited only to the output of the overall level of 

such a signal. 

3. At the same time, there is a need to improve the 

efficiency of diagnostics and to eliminate errors and false 

alarms by introducing an integral (complex) assessment of 

the technical condition. 

The authors concluded that the analysis of vibration, as 

the most common type of diagnostic parameters, in some 

cases may not be enough. One of such cases is diagnostics 

of electric drives. For these units, the necessity of the 

complex use of mechanical and electrical parameters has 

been substantiated. 

Thus, in this work, the task is to improve the efficiency of 

the diagnostic process for electric drives using an 

intelligent decision-making unit based on vibration and 

current sensors. 

2 LABORATORY BENCH AND RECORDING EQUIPMENT 

A laboratory stand (asynchronous drive with a worm gear, 

Fig. 1) was used as an object of diagnostics. The power of 

the asynchronous electric motor is P = 0.18 kW. Rotation 

speed n = 1350 rpm. Worm gear MCh-40M-31.5-47.6-51-

5-1S-U3. Load on the output shaft of the worm gear M = 

32 N∙m. In laboratory conditions, the following 

malfunctions were identified and reproduced: reduction of 

the contact patch of the gear transmission, misalignment 

of the gear transmission, grazing in the engagement zone, 

grazing on the drive motor shaft, rotor imbalance, 

loosening of the foundation (fastening), lack of lubrication. 

 
Figure 1. Laboratory bench: 1 - asynchronous motor; 2 - worm 

gear; 3 - loading device 

 

To obtain diagnostic information at both stands, the 

following sensors were used: vibration transducer AR2019, 

current sensors LEM LA-55P. 

Tab. 1 and Tab. 2 shows the technical parameters of the 

sensors used: vibration transducer AR2019 and current 

sensors LEM LA-55P. 

 

Parameter of Vibration transducer 

AR2019 

Value 

Noise level, RMS (1 Hz–10 kHz), g < 0.005 

Frequency response (flatness ± 1 dB), 

Hz 

5-30000 

Working temperature range, °С -40...+125 

Maximum impact (peak value), g ± 10000 

Amplitude range, g ± 7000 

Transverse sensitivity < 5 % 

Axial sensitivity, mV/g 0.5 ± 10 % 

Table 1. Technical parameters of the AR2019 vibration transducer 

 

Parameter of LEM LA-55P current 

sensor 

Value 

Rated value of the measured current, A 50 

Response time, ns 50 

Output, mA 25 
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Measurement range, A ±100 

Bandwidth, kHz 200 

Working voltage, V ±15 (±5 %) 

Working temperature, °C -40...+85 

Accuracy, at rated current in the 

primary winding, 

T = 25 °C, ± 15V (± 5 %) – power supply 

±0.65 % 

Table 2. Technical parameters of the AR2019 vibration transducer 

and the LEM LA-55P current sensor 

 

The current sensors were installed in the electric motor 

control unit (for two phases), and the vibration sensor was 

installed at the control point on the gear reducer in 

accordance with GOST R ISO 13373-1-2009. 

Vibration transducer AR-2019 needs external power 

supply. The connection diagram of the sensor to the 

equipment and the matching device is shown in Figures 2 

and 3. 

  
Figure 2. Connection diagram of the AP2019 to the recording 

equipment: VS - vibration transducer, XP - output from the 

matching device 

 
Figure 3. Diagram of the matching device for the AP2019 sensor 

 

The terminator output connects to the NI SCB-68 

connector block. LEM LA-55P current sensors are installed 

on the stator windings of the drive motor. The sensor 

circuit and its connection are shown in Figure 4. 

 
Figure 4. LEM LA-55P sensor connection diagram 

 

A resistor of 100 Ohm is selected as Rsh. 

The calculation of the coefficients of the discrete wavelet 

transform was carried out using the developed software in 

the LabView environment (data collection and processing 

unit). The reliability of the calculation was confirmed in the 

MatLab software environment using the Wavelet Toolbox. 

3 DEVELOPMENT OF THE ARCHITECTURE OF THE 
DECISION BOX 

As part of the research, work was carried out to select the 

optimal architecture of the neural network classifier and it 

was concluded that the best results in training and testing 

are achieved precisely on the basis of a 3-layer neural 

network with the number of neurons on the input layer – 

80, on the intermediate layer – 1000 and on the output – 

8. 

Based on the application of the basic principles of building 

decision-making systems, a model for recognizing the 

technical states of electromechanical equipment has been 

developed on the basis of a 3-layer neural network 

classifier (Fig. 5) with a nonlinear activation function of 

computational elements in a layer (bipolar sigmoid) and a 

learning algorithm based on backpropagation based error. 

The proposed model is capable of developing a decision on 

the state of the object for various combinations of 

diagnostic features that were not previously encountered 

in the training sample, and thereby increasing the 

reliability of recognizing the technical condition of the 

equipment. 

The developed architecture includes an input layer (80 

neurons, labeled X1, ..., Xi, ..., Xn), an intermediate layer 

(1000 neurons, labeled Z1, ..., Zj, ..., Zm) and an output layer 

(8 neurons, labeled Y1, …, Yk,…, Yp). The input layer 

receives information about the current state of diagnostic 

features (the number of neurons is equal to the number of 

diagnostic features), data is processed on the intermediate 

layer, and a larger number of neurons ultimately lead to 

more accurate results and a decrease in the performance 

of the network as a whole. At the output layer, decisions 

about the state of the object are issued (the number of 
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neurons is equal to the number of recognizable states of 

the equipment). 

Neurons representing the network outputs (designated 

Y1,…, Yk,…, Yp) and hidden neurons can have an offset of 1 

(Fig. 5). These biases serve as weights on the connections 

(ν, w) emanating from neurons, the output of which 

always appears 1. During the learning process, the signals 

propagate in the opposite direction, where the network 

response error is calculated and the weighting coefficients 

ν and w. The output signal Y takes on a maximum value 

in%, which corresponds to a specific technical condition of 

the equipment (the probability of this condition). 

 
Figure 5. Neural network architecture 

 

The decision box was implemented as a separate 

environment with the ability to load data from the data 

collection subsystem. 

The training was built on the basis of the error back 

propagation algorithm (Fig. 5). 

On one laboratory bench in each experiment, a certain 

type of defect or malfunction was created by changing 

either the position of the worm wheel or replacing it (5 

wheels were made). After testing with a gear reducer, the 

reducer worm wheel was replaced (5 gear wheels were 

replaced). In each experiment, about 1000 measurements 

were carried out. 

4 DECISION BOX TRAINING 

Training and testing of the developed network was carried 

out on the basis of experimental data obtained at the 

laboratory bench when simulating defects. The training 

sample included 20 features (general level and Daubechies 

wavelet coefficients db-8 – root-mean-square values 

(hereinafter - RMS) and their maximum values (max)) for 

each information flow (vibration acceleration, vibration 

velocity and two electric current of phases), supplemented 

with a noise component (10-200 % of the standard 

deviation (hereinafter – SD) for vibration acceleration and 

vibration velocity and 10-300 % of SD for current). With 

such a sample, the neural network was trained (about 

40000 iterations), the result of which is shown in Tab. 3. 

 

Parameter Value 

Number of hidden layers 1 

The number of neurons on the hidden 

layer 

1000 

Vibration noise, % of RMS 200 

Noise current, % of RMS 300 

Total iterations 40473 

Total correct answers 39674 

Total errors 799 

Percentage of correct answers, % 98 

Mean square error 0.071 

Number of neurons on the input layer 80 

The number of neurons on the output layer 8 

Table 3. Neural network training results 

 

Also, a statistical estimate of the root mean square error 

(MSE) was carried out, defined as the mean square value 

of the differences between the desired output value ti and 

the values Yi actually obtained at the network outputs for 

each example i, averaged over n tests. Formula (1) 

characterizes this error: 

,
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n

Yt

MSE

n

i

ii





                                                 (1) 

(1) 

where ti is the required response from the neural network; 

Yi is the answer received as a result of the neural network; 

n is the total number of neural network tests. 

 

The noise component during training affects the sensitivity 

of the neural network as a whole. The selected noise 

values ultimately affect the ultimate reliability of the 

network's responses, as well as the learning rate. For 

example, in the case of “rotor imbalance” malfunction, the 

RMS of the wavelet coefficient d6 of the current of the 

first phase was 0.682 with an RMS of 0.003. By increasing 

the RMS value by 300 % (adding a noise component), the 

network sensitivity also changes (downward), but the 

recognition accuracy increases (during testing). However, 

this approach yields good results only with a small number 

of recognizable output states. In the context of this work, 

an increase in the noise component is acceptable. 

To further substantiate the presence of a connection 

between mechanical and electrical parameters, we 

present the results of training a neural network (of the 

same architecture: one hidden layer with 1000 neurons) 

when only vibrational (Tab. 4) and only current parameters 

are supplied to its input (Tab. 5). 

It can be seen from the results obtained that this 

architecture of the neural network shows good results 

during training when only vibration data is supplied to the 
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input (Tab. 4). However, when comparing these learning 

results with the results obtained on the parameters of 

vibration and current (Tab. 3), we can conclude that with a 

smaller number of iterations (training time), we get 

approximately the same percentage of correct answers 

and a smaller error value. 

 

Parameter Value 

Vibration noise, % of RMS 200 

Total iterations 64487 

Total correct answers 62941 

Total errors 1546 

Percentage of correct answers, % 97.6 

Mean square error 0.081 

Table 4. Results of training the neural network when the 

parameters of vibration acceleration and vibration velocity are fed 

into the input 

 

Parameter Value 

Noise current, % of RMS 300 

Total iterations 1114867 

Total correct answers 897312 

Total errors 217555 

Percentage of correct answers, % 80.5 

Mean square error 0.5 

Table 5. The results of training the neural network when the 

current parameters are fed to the input (phase 1 and phase 2) 

 

In fig. 6 shows the effectiveness of training an artificial 

neural network using various input data: "all data" 

hereinafter – SD both vibration (vibration acceleration and 

vibration velocity) and current data (phase 1 current, 

phase 2 current) are fed to the neural network input. 

 
Figure 6. The effectiveness of training an artificial neural network 

 

It can be seen from the presented graph that when only 

current data is supplied to the input, the training efficiency 

drops sharply. However, if we compare training with the 

use of only vibration data, with training with complex data, 

we can conclude that when the values are 70% or more, 

the current parameters have a significant effect on the 

training duration. 

Consequently, the training of the neural network is carried 

out most efficiently with an increase in the number of 

input parameters. The positive dynamics during training 

can also be explained by the presence of the same 

reaction of the controlled parameters of vibration and 

current to the occurrence of defects and malfunctions. 

5 DECISION BOX TESTING 

When testing the trained network, the values of diagnostic 

signs (80 values) obtained in laboratory conditions were 

fed into the input. The test results are shown in table 6. A 

change in the noise component of the training sample 

strongly affects the final reliability of the network 

solutions. The selected value for this component led to the 

best test results (average confidence about 99 %). 

An important result when testing a neural network was 

the identification of diagnostic features (wavelet 

coefficients), which are the most sensitive (informative) to 

changes in the technical state of electrical equipment. In 

the studies carried out, the value of the selected 

controlled traits has been substantiated. 

 

Input data Number  

of tests 

Validity of  

decisions, % 

Working condition 2121 100 

Reduction of the contact patch 

of the gear train 

1067 99.6 

Gear misalignment 1067 98.9 

Grazing in the engagement 

zone 

1063 100 

Grazing on the asynchronous  

motor shaft 

1062 100 

Rotor imbalance 1063 100 

Looseness of fastening 1056 100 

Lack of lubrication 1137 97.9 

Table 6. Results of testing the neural network after training 

 

In view of the fact that the training set included 20 

features supplemented by a noise component of 10-200 % 

of the standard deviation for vibration acceleration and 

vibration velocity and 10-300 % of the standard deviation 

for the current, in table 5 the best results in comparison 

with table 2-4 were obtained. This manipulation allows to 

increase the range of diagnostic signs for troubleshooting. 

In the future, with an increase in the number of faults, it is 

necessary to adjust the training sample in order to achieve 

better results during testing. 

If a signal is sent to one of the neurons of the output layer 

and pass it through all the hidden layers to the input layer, 

the numerical characteristics of the input neurons in 

relation to this output neuron is given. This allows, as a 
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result of the work of the decision-making unit, to select 

the most sensitive diagnostic signs for assessing the 

technical condition with the level of confidence in these 

results (in %). 

For example, for the diagnosis “Lack of gear lubrication” 

(Fig. 7), the most informative are the wavelet coefficients 

a8, d5, d2 and the peak values of the general level and 

coefficients d7, d6 of vibration acceleration (99-100 %), as 

well as general level, coefficients d6, d5, d4, peak values of 

the general level and coefficients d6, d5, d4 of the current 

of the first phase (99-100 %). 

 

 

 

(a) 

 

 
(b) 

 

Figure 7. An example of the selection of sensitive (the level of 

confidence is indicated on the ordinate axis, in %) diagnostic signs 

in the absence of lubrication of the gear transmission in the 

decision block: a) from the vibration acceleration signal, b) from 

the current signal of the first phase 

6 CONCLUSIONS 

As a result of the analysis, a method was developed for 

selecting the most informative diagnostic signs for 

diagnosing electric drives with a reliability level of results 

close to 100 %, obtained from the output of the decision 

box. The architecture of a neural network has been 

developed, which consists of 80 input neurons, 1000 

intermediate and 8 output neurons. Analysis of the results 

of the neural network operation with the obtained 

vibration and current data showed that with a smaller 

number of iterations (training time) (by 40 %), 

approximately the same percentage of correct answers 

and a lower error value (by 12 %) were obtained. 

Thus, on the basis of the study carried out, the urgent 

scientific and technical problem of developing a decision-

making block, characterized by a joint analysis of 

mechanical and electrical parameters, has been solved. 

Thus, the efficiency of the technical condition monitoring 

is increased in the form of an increase in the reliability 

indicator up to 97.9 %. 

For automated processing of experimental research results 

and subsequent practical implementation, a unified 

information and measurement system has been 

developed, which includes a hardware platform and 

software products for collecting and processing data, as 

well as a decision-making unit based on a neural network, 

including a laboratory stand for research malfunctions of 

the electric drive. 

The results of the study showed the possibility of 

increasing the efficiency of diagnostics through the use of 

an integrated approach (increasing the number of 

diagnostic signs), which speeds up the adjustment (by 1.5 

times), reduces the magnitude of the error and increases 

the reliability of the decisions. 

Thus, based on the analysis of the wavelet coefficients of 

current and vibration acceleration, reliable detection of 

such defects as defects of the mechanism as a whole 

(loosening of fastening and grazing), malfunctions of 

motors (imbalance of the rotor of an induction motor, 

grazing of the rotor), malfunctions of the gear transmission 

(misalignment, reduction of the contact patch, lack of 

lubrication) is provided. This paper shows the possibility of 

increasing the efficiency of diagnosing an asynchronous 

electric drive by using complex analysis using an intelligent 

decision-making unit. 
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