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Abstract 

Todays’ heterogeneous manufacturing environments and isolated manufacturing elements hinder the 
realization of a complete and data consistent digital twin. Against this background, an increased 
connectivity based on the Industrial Internet of Things (IIoT) might be the future key enabler for the digital 
twin. However, it requires each domain to transfer, rearrange and rethink their individual data solutions in 
a framework that is IIoT-ready. This paper presents an IIoT-based implementation of a digital twin 
framework for machining, enabling the creation of a complete and data consistent digital twin throughout 
process planning, manufacturing and quality assurance. Different use cases are introduced based on the 
example of a blade integrated disk for modern turbofan engines. 
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1 INTRODUCTION 

Today, digitization is the primary driver for innovations in 
manufacturing. In the context of digitization the digital twin, 
a virtual representation of a physical manufacturing 
element, is the central object of interest. However, within 
the existing heterogeneous manufacturing environments 
and their isolated manufacturing elements, creation of a 
complete and data consistent digital twin is a challenging 
task. In the near future, an increased connectivity between 
all relevant manufacturing elements in the sense of the 
Industrial Internet of Things (IIoT) might be the key enabler 
for the digital twin. In “Digital Factories 2020” PwC states, 
that the use of connectivity technologies and big data 
analytics in manufacturing is set to increase dramatically 
until 2022 and beyond [Geissbauer 2017]. Against this 
background, each domain is responsible to transfer, 
rearrange and rethink their individual data solutions in a 
digital twin framework that is IIoT-ready. 

As one of the most important domains in manufacturing, 
machining (especially cutting) benefits from a long-term 
course of development and an advanced level of 
digitization. At the same time, it is characterized by the 
interaction of various software and hardware components 
for planning and execution of the manufacturing process. 
Examples are computer-aided manufacturing systems 
(CAM), computerized numerically controlled machine tools 
(CNC), or coordinate measurement machines (CMM). 
However, the data generated within the software and 
hardware components of machining is so far been used 
almost exclusively to fulfill the individual task of the single 

component. As a result, process planning, manufacturing 
and quality assurance nowadays work on different, only 
extremely incomplete digital twins. A cross-system solution, 
which couples process planning, manufacturing and quality 
assurance, and creates a complete and data-consistent 
digital twin, is missing. Correlations and causalities, as well 
as optimization potentials regarding quality, time, costs and 
sustainability remain unexposed and unused. 

Against the introduced problem, this paper presents a 
domain-specific implementation of a digital twin framework 
for machining (called dPart®), enabling a complete and 
data consistent digital twinning throughout process 
planning, manufacturing and quality assurance. The 
implementation comprises data collection, processing and 
analysis functionalities in an IIoT infrastructure for a 
targeted evaluation and optimization of machining 
processes. The proposed framework enhances the 
completeness and the benefits of the digital twin, increases 
the digital resilience in machining and prepares it for a 
future data economy. 

2 STATE OF THE ART 

The modern idea of the digital twin dates back to 2003, 
when Grieves introduced his “Conceptual Ideal for PLM” in 
the context of Product Lifecycle Management (PLM). The 
idea described the connection of the real and virtual space 
(and its objects) through data and information exchange 
along the four phases of creation, production, operation and 
disposal of a product. Initially, the concept carried the name 
“Mirrored Spaces Model” or “Information Mirroring Model”. 
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At a later stage, Grieves and his co-author Vickers 
introduced the name Digital Twin. [Grieves 2015] 

Within the last two decades, the idea of the digital twin has 
emerged into various sectors apart from PLM, such as 
construction, healthcare and many more [Glaessgen 2012, 
Boje 2020, Croatti 2020]. The sheer number of different 
application sectors and stakeholders has led to a large 
variety of definitions for the digital twin, along with terms 
such as the digital shadow [Abele 2016, Negri 2017, 
Kritzinger 2018, Bergs 2020a, Bergs 2021]. Today, 
concerning manufacturing, the general definition of Grieves 
still resembles the fundamental idea of the digital twin, it 
being a virtual representation of a physical product. 

Within the development towards the “perfect” digital twin in 
manufacturing, the initial level of digitization within the 
addressed technology domain plays an important role. As 
introduced beforehand, machining, with its broad industrial 
application, advanced state of the art and mature software 
and hardware components, benefits from an advanced 
digitization level. Over the last decades, a number of 
concepts and technologies has paved the way towards 
today’s status of digitization in machining. 

As an example, virtual manufacturing systems (VMS) or 
virtual process systems (VPS) enhance the completeness 
of the digital twin, especially in the planning phase of 
production, based on the integration of coupled simulation 
tools within CAM [Brecher 2011, Altintas 2014, Wiederkehr 
2016]. Cyber-physical (production) systems (CPS/CPPS) 
connect computational entities with the physical world of 
production, providing data accessing and data processing 
services available on the internet, thereby building a cyber-
physical environment for the digital twin, especially in the 
manufacturing phase of production [acatech 2011, 
Monostori 2014]. Today, it is the concept of industry 4.0, 
smart manufacturing and big data, along with its 
technologies such as IoT, edge and cloud computing, and 
artificial intelligence (AI), which further accelerates 
digitization in manufacturing, thereby significantly 
enhancing the maturity of the digital twin. 

Hänel et al. propose a digital twin for machining processes 
for the application in aerospace industries [Hänel 2020]. 
The method is able to create a digital twin with increased 
information content from planning and process data in 
machining. The underlying information model structures 
data acquisition, model-based data processing and data 
storage via Hierarchical Data Format (HDF) technology, 
along with visualization functionalities. It is demonstrated 
based on the example of a lever component from the 
aerospace sector. Caesar et al. introduce the 
corresponding information model [Caesar 2020]. 

Teige et al. address a system for the intelligent, networked 
and autonomous manufacturing of aerospace components 
[Teige 2021]. The system connects the process steps of 
cutting tool manufacturing, autonomous machining and 
application. It acquires high-frequency machine data from 
manufacturing devices via an edge solution and forwards 
them to an AI solution on cloud level. Incorrect process 
conditions are detected and corrective instructions are 
returned to the field level. The concept of the digital twin is 
not directly addresses. However, the system provides 
connectivity approaches in the sense of I4.0 and IoT. 

Armendia et al. focus on the generation of a digital twin of 
the machine tool and the application for machine tool and 
machining process optimization [Armendia 2019a]. Based 
on a virtual machine tool model, the system is able simulate 
machining operations and to reduce machine tool and 
machining process setup times. A cloud-based data 
management system collects monitored machine tool and 

process data, and is at the same time able to return 
performance predictions. In the course of two use cases 
from aerospace and automotive sector, predictive 
maintenance and a correlation between process 
parameters and quality measurement is demonstrated 
[Armendia 2019b]. 

Möhring et al. introduce the idea of self-optimizing 
machining systems (SOMS), which combine several 
elements of industry 4.0 for the adaptive machining of 
workpieces [Möhring 2020]. Elements of SOMS are 
process planning, monitoring, adaptive control, simulation 
and AI solutions. Focus is on the integration of elements 
with each other for the application in different machining 
cases. 

Hänel et al. demonstrate the acquisition of planning and 
manufacturing data along with an integration of a cutting 
force model for the establishment of a digital process twin 
[Hänel 2019]. An information model based on UML class 
diagram along with HDF data storage is proposed. 

Overall, only a limited amount of research work regarding 
digital twin frameworks can be found in the machining 
domain. Existing research provides promising approaches 
in partial areas of machining. However, a holistic concept 
and an exemplary implementation of a digital twin 
framework for the machining domain, which applies a wide 
range of current I4.0 technologies, is missing. 

3 DIGITAL TWIN FRAMEWORK FOR THE 
MACHINING DOMAIN 

The proposed digital twin framework for the machining 
domain represents a domain-specific implementation of a 
big data lambda architecture [Marz 2015], combined with 
the draft ISO 23247 (automation systems and integration - 
digital twin framework for manufacturing) [ISO 23247]. 

The lambda architecture, initially proposed by Nathan Marz, 
comprises two types of data flows and four main elements 
(see Figure 1): 

 Serving layer: Storage and provision of processed data 

in case of a query from a service or a user 

 Batch layer: Batch-wise, non-real time processing of 
large resting data sets (also referred to as “cold path”) 

 Stream layer: Low-latency, real-time or close to real-

time processing of small, fast moving data sets (also 
referred to as “hot path”) 

 Data source: Provision of data from databases (batch 
layer) or data streams (stream layer) 

 

Figure 1: Lambda architecture 

The reason for choosing a lambda architecture is its batch 
layer, which is eminent for processing the large data sets in 
machining (e.g. millions of CNC data points throughout a 
single machining operation) with the complex technology 
models of the machining domain (e.g. dexel-based 
numerical engagement simulation). At the same time, the 
speed layer is able to process small and sometimes fast 
moving data sets for monitoring and control purposes, such 

Data source
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Lambda architecture
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as temperature, acoustic emission or coolant sensor data. 
During the implementation of a domain-specific digital twin 
framework for machining, the big data technology stack of 
the lambda architecture has to be integrated with the 
domain-specific resources, applications and services of the 
machining domain, such as CAx and many other. 

The general digital twin framework for manufacturing of ISO 
23247 divides the manufacturing domain into four main 
areas, namely user domain, core domain, data collection 
and device control domain, as well as observable 
manufacturing domain (see Figure 2): 

 User Domain: Human, device, application, system that 
uses applications and services from core domain 

 Core Domain: Operation and management of digital 
twin (provisioning, monitoring, optimization etc.) 

 Data collection and device control domain: Monitoring 
and collection of data from sensory devices 

 Observable manufacturing domain: Physical 
manufacturing resources such as personnel, 
equipment, material, etc. 

 

Figure 2: Digital twin framework ISO 23247 

Figure 3 illustrates the combination of the lambda 
architecture with the domain-based reference model of ISO 
23247, as well as mapping of the specific resources, 
applications and services of the machining domain onto the 
framework. The following subsections explain the domain-
specific implementation of the framework. 

 

Figure 3 : Proposed digital twin framework for the 
machining domain 

3.1 Orchestration 

The implementation of the proposed digital twin framework 
operates on local, edge or cloud devices, across a variety 
of different applications and data types. Therefore, an 
orchestration layer is required, which manages the 
underlying framework elements (especially cloud elements; 
see Figure 4). Furthermore, it specifies the required 
semantic data model, which is required to merge all cross-
system data into a single digital twin. 

Cloud infrastructure and IoT management 

The underlying cloud infrastructure is an “International Data 
Spaces (IDS) ready” on-premise cloud solution of the 
Fraunhofer-Gesellschaft (Fraunhofer Edge Cloud FEC). 
The FEC infrastructure at the Aachen, Germany institute 
node is an ONCITE base brick with 208 cores and 1.5 TB 
RAM, along with an ONCITE storage brick of 27 x 10 TB 
HHD raw storage. Further cloud nodes currently exist at 
Ilmenau and Berlin, Germany. The software stack 
comprises OpenStack as cloud platform, Kubernetes for 
cluster management and Docker for the containerization of 
applications. Furthermore, the on-premise cloud provides 
different zones, an internal, a shared, and a public zone, 
thereby allowing the joint development and operation of 
applications together with external partners. 

Semantic data model 

For a complete and data-consistent digital twinning across 
different applications and data types, we propose domain 
ontologies, and use these with persistent identifiers (PIDs) 
[Schiller 2021]. The architecture is based on the Resource 
Description Framework (RDF) that offers both ingestion and 
utilization of valuable information along the manufacturing 
steps within the product lifecycle. We might integrate 
aspects of the upcoming topic of asset administration shells 
(AAS) to the semantic data model in the near future. 

 

Figure 4: Fraunhofer on-premise cloud infrastructure 

3.2 User domain 

Regarding the user domain, we propose two locations for 
user interaction with the digital twin. Due to its established 
role within the product lifecycle and its technical maturity, 
we recommend the CAx system as the main environment 
for direct user interaction with the digital twin. Furthermore, 
we recommend lightweight interfaces in the form of 
dashboards for interacting with the digital twin within web 
applications or on mobile devices. 
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CAx system 

Today's CAx system is a local desktop application with low 
computing power as well as a lack of integrated and 
coupled technology models for process simulation. In 
addition to outstanding development work at the core of the 
systems, the shortcomings are also based on missing 
networking capabilities of the systems with modern edge or 
cloud ecosystems. Because of the technical inadequacies, 
insufficient enrichment of the digital twin with simulation 
data takes place during the process planning phase. 
Furthermore, no manufacturing data is returned to the CAx 
system after production. 

In order to enhance the completeness of the digital twin in 
the process planning phase, we tightly integrate our 
proprietary computer-aided engineering (CAE) kernel for 
process simulation. Figure 5 (bottom) shows the 
functionalities of the CAE kernel, respective technology 
models. A commercial CAD system with a wide application 
architecture and open SDK functions is used as the basic 
environment. We extend the CAD environment with a 
proprietary CAM plug-in and our proprietary CAE plug-in for 
process simulation in the form of dynamic link libraries 
(DLL). The integration comprises software interfaces 
between the CAD/CAM/CAE kernels as well as adaptions 
of the CAx user interface. Although one might assign the 
CAD/CAM/CAE kernels of the local CAx system to the core 
domain, we assign it to the user domain in this case. 

Furthermore, we connect the CAx system to our FEC cloud 
infrastructure through a web server, enabling an extension 
to the core domain. A detailed explanation of the extension 
is given in section 3.3. 

 

Figure 5: CAE kernel integration and and cloud interface 
of the CAx system 

Dashboarding 

For some applications, the targeted visualization and 
assessment of specific quality, time, cost or ecology 
information might be of relevance. Furthermore, access to 
a full CAx system is difficult to realize at every location and 
for every person within manufacturing. Interaction with the 
digital twin via dashboards and mobile devices represents 
a suitable alternative. Such dashboards can be built 
efficiently from open source platforms (React, Angular etc.) 

3.3 Core domain 

The functional elements of the core domain can be 
executed either local, on the edge, or on cloud level. In our 
understanding, most of the functional elements of the core 
domain should be executed in the cloud. The following 
section explains the data provision to the user domain over 
a serving layer, the domain-specific data processing via 
batch, ML and stream layer, as well as the data sources of 
the core domain (see Figure 6). 

 

Figure 6: Core domain elements of the digital framework 

Serving layer 

The main component of the serving layer is an analytics 
data store in the form of a NoSQL database (MongoDB). It 
holds the computed batch and stream views of the core 
domain. Different files (TDMS, JSON, Parquet, STEP etc.) 
and their relation based on the semantic data model 
represent the digital twin. Different entities or users in the 
user domain, e.g. the CAx system, can query the digital twin 
information from the serving layer. 

Batch layer 

The batch layer contains a large number of technology 
microservices. These microservices are technology-
specific data processing applications in the form of Docker 
images, mainly build from the CAD/CAM/CAE kernel 
functionalities of the machining domain. The technology 
microservices compute process or workpiece condition 
data, thereby providing digital twin information in the form 
of batch views to the serving layer. 

As an example, Figure 7 shows the extension of the CAx 
system into the core domain. In order to increase the data 
storage, processing and analysis capabilities of the CAx 
system, it is connected to a web server (nginx) in the FEC 
cloud infrastructure. The web server transmits CAx input 
information in the form of different data types (JSON, STEP, 
STL etc.) to a web framework (Django / Node.js). The web 
framework is connected to a NoSQL database (MongoDB) 
along with a simulation scheduler, which again operates a 
number of workers. The workers can execute multiple 
instances of the CAD/CAM/CAE kernels in the form of 
Docker images on virtual machines, thereby significantly 
increasing the computing power of the CAx system through 
parallelization. 

The integration of the extended process simulation 
capabilities along with the increased computation power 
based on the cloud interface allows for complex process 
simulations, parallelized process optimizations and many 
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more. Both factors significantly enhance the completeness 
of the digital twin in the process planning phase. Other 
batch applications, e.g. the edge data acquisition and 
subsequent data processing, explained in the following 
section 3.4, operate on principally the same architecture. 

 

Figure 7 : Exemplary extension into the core domain 
(here of the CAx system) 

Machine learning layer 

We extend the lambda architecture with a machine learning 
layer. The ML layer takes up data from the batch and 
stream layer to train ML models and deploy them to the 
batch and stream layer for data processing. An example is 
our digital image processing with deep learning for 
automated cutting tool wear detection [Bergs 2020b]. In this 
case the ML model is trained in the ML layer with acquired 
tool wear information from a machine integrated camera in 
the observable manufacturing domain. The trained model is 
then integrated into the batch and stream layer for tool wear 
quantification. 

Stream layer 

The stream layer consists of streaming analytics pipelines, 
which can be established from platforms such as Apache 
Spark or Apama. Exemplary streaming analytics 
applications are for example the monitoring of the spindle 
power or the coolant concentration over a sliding time 
window. The streaming data is used to update the batch 
views in the serving layer or is directly streamed to the user 
domain for evaluation. 

Data source 

In general a persistent NoSQL database, along with a 
Message Queuing Telemetry Transport (MQTT) and 
Apache Kafka broker, provide acquired raw data, structured 
per machining operation, to the batch, ML and stream layer 
for data processing. The acquired raw data resembles the 
digital shadow of the manufactured workpiece and is 
converted to the digital twin inside the batch, ML and stream 
layer through data processing. 

3.4 Data collection and device control domain 

The data collection and device control domain is supposed 
to monitor, control and collect data from the elements of the 
observable manufacturing domain. Concerning the 
implemented framework, this primarily comprises an edge-
based data acquisition solution (see also Figure 8). 

Edge data acquisition: 

Today's machine tools exchange data with other systems 
in the manufacturing environment only to a limited extent. 

The high frequency and time synchronous acquisition of 
machine and sensor data on field and control level via 
suitable edge devices is not industrial state of the art. 
Accordingly, the digital twin can only insufficiently be 
supplemented with manufacturing data (acquired meta and 
raw data, model-based determined process and product 
condition data) during the manufacturing phase. 

 

Figure 8 : Data collection and device control domain 
infrastructure 

To overcome the described deficit in machining, we 
introduce an edge data acquisition. The solution is a 
proprietary LabVIEW application for data acquisition on 
HMI task level, integrating commercially available access 
libraries depending on the control type (Siemens 840D sl / 
Fanuc Professional 6). It is able to maintain a stable data 
acquisition frequency of > 250 Hz across a maximum of 100 
channels. It integrates and synchronizes additional sensor 
data from multiple devices, such as force, acoustic 
emission and temperature sensors or cameras. Integration 
of the additional sensors takes place in the machine or the 
clamping devices, tool holders etc. The acquired data is 
stored in different file formats (TDMS, JSON, Parquet etc.). 

3.5 Observable manufacturing domain 

The observable manufacturing domain of machining mainly 
comprises the machine tool, which executes the machining 
operation. Additionally, the measuring devices from quality 
assurance such as coordinate measuring machines (CMM) 
might be included. 

Machine tool: 

The previously introduced edge data acquisition has been 
integrated into four machine tools (Mikron HPM800U, DMG 
MORI DMU65FD, Hermle C42MT, Makino D500). The 
required edge device is an industrial personal computer 
(SIMATIC IPC677E), installed in the control cabinet of the 
machine tool (see Figure 9). Connection is realized on 
human-machine interface (HMI) task level via TCP/IP 
ethernet connection to the numerical control unit (NCU). 
Figure 9 shows the installed I-PC, along with a control 
cabinet for temperature and acoustic emission sensor data 

Core domain

Web server (nginx)

Web framework (Django / Node.js)

Database (MongoDB)Scheduler

Worker 1 Worker 2 Etc.

CAD kernel CAM kernel CAE kernel

User domain

CAx system

Edge data acquisition:

Machine / Measuring

Edge data acq. (Labview)

NCU/HMI

Sensors DAQ

 Axis speed

 Feed speed

 Operation type

 Spindle speed

 Position in WCS

 Tool name

 Tool length X

 Tool length Y

 Tool length Z

 Tool radius

 Cutting edge

 Cutting edge

modified

 Axis loads

 Offset G54

 Axis names

 Program name

 R parameter

 Position in MCS

 UGUDs

 Etc.

Observable manufacturing domain

Data collection and device control domain

Core domain

Edge device control

Web server (nginx)



 

MM Science Journal | 2021 | NOVEMBER - Special Issue on HSM2021 

5139 

acquisition (DAQ chassis), inside one of the connected 
machine tools. 

 

Figure 9: Edge data acquisition hardware 

4 FRAMEWORK APPLICATION 

In order to demonstrate the application of the implemented 
digital twin framework, this chapter introduces two use 
cases. The first use case is a process design task, the 
second use case is a quality prediction task, both in milling 
of a blade integrated disk (BLISK) demonstrator. Figure 10 
shows the most relevant demonstrator characteristics. 

 

Figure 10 : Blisk demonstrator 

A seven-block strategy was selected for blade machining to 
limit the free overhang and deflection of the blades during 
milling. Three different solid carbide tools were used for the 
5-axis milling of the blades: (1) roughing tool: Ø 16 mm bull 
nose; (2) semi-finishing tool: Ø 16 mm ball end; (3) finishing 
tool: Ø 12 mm ball end, cantilever length Lw = 105 mm. 

4.1 Use case I: Process design 

In a possible process design task a user would like to 
determine the correlation between the step-over ae,SF in 
semi-finishing and the tool deflection ∆tr in finishing. Beyond 
CAD/CAM functionalities, the described process design 
task requires integrated process simulation capabilities 
along with sufficient computation power. However, today’s 
CAM system provides no support functions of that type, 
especially not based on a digital twin representation. 

In order to fulfil the above mentioned process design task, 
we created input information in the local CAx system, 
respective the user-domain: 

 Seven semi-finishing and finishing operations, one for 
each block of the blade (+ corresponding binary files 
for reproduction on cloud level) 

 CAM parameter variation values (ap,SFi) 

 JSON array of characteristic simulation parameters 

 Macroscopic tool geometry information 

 Elastic modulus of solid carbide: Et = 600 GPa 

 Force coefficients: 

Ktc: 2746 N/mm², Krc: 981 N/mm², Kac: 14 N/mm², 
Kte: 14 N/mm, Kre: 55 N/mm, Kae: 55 N/mm 

 Raw and finish part geometry 

The CAx system sent a simulation request to cloud level, 
respective the core-domain, via the web server and 
uploaded all required input information to the database. A 
request handler checked whether a similar simulation 
request was made in the past and whether corresponding 
simulation data was already available. It communicated a 
data generation command to the simulation scheduler. The 
simulation scheduler sorted the simulation request by 
computational effort and managed the overall optimization 
workflow. In this case, three simulation chains were 
generated and divided into 42 subtasks for computational 
parallelization, resulting from the combination of 3 
variations of semi-finishing operations in 7 different blocks 
each, followed by a subsequent finishing operation. The 
system started a corresponding number of simulation 
workers to execute the CAD/CAM/CAE kernels on virtual 
machines consisting of five modularly built and 
interconnected Docker Images: 

1. CAM Toolpath calculation 

2. Macroscopic engagement simulation (multi-dexel) 

3. Microscopic engagement simulation (analytical) 

4. Dual-mechanistic cutting force simulation (Altintas) 

5. Tool deflection simulation (Euler-Bernoulli) 

Subsequently, the simulation workers saved all process 
and part condition data in the analytical data store of the 
core domain. Based on the parallelized system the entire 
simulation task could be performed below one hour, instead 
of days, and could thereby be integrated into the regular 
CAx workflow. Figure 11 shows the digital twin information, 
which was returned from the analytical data store to the 
local CAx system. 

 

Figure 11 : Semi-finishing IPWs after variation of step-over 
ae,SF (A); Resulting tool deflection ∆tr in finish milling (B) 

Figure 11 (A) shows the resulting in-process workpieces 
(IPWs) which result from semi-finishing with the three 
different step-over values ae,SFi. Figure 11 (B) shows the 

Edge

I-PC

Sensor connect.

NCU connect.

Material Ti6Al4V

Diameter d 440 mm

Blade number nb 30

Blade height hb 100 mm

Chord length lb 45 mm

Max. thickness thb 2,5 mm

lb

hb

Top view

A

ae,SF1 = 1 mm ae,SF2 = 2 mm ae,SF3 = 3 mm

B

Tool deflection ∆tr [µm]

0 30

∆tr,max < 20 µm ∆tr,max > 30 µm ∆tr,max > 30 µm

1

5

2 3

1 2 3

ae,F = 0.2 mm

4



 

MM Science Journal | 2021 | NOVEMBER - Special Issue on HSM2021 

5140 

corresponding tool deflection after finish milling with a 
step-over of ae,F = 0.2 mm. Within the areas 1-3 it can be 
clearly seen, that a semi-finishing with ae,SF > 1 mm results 
in excessive tool deflections ∆tr > 20 µm during finish 
milling. The results are an indication for a user to not exceed 
ap,SF = 1 mm as parameter for the semi-finishing process. 
Furthermore, for all three cases noticeable force peaks 
occur at the blade tip close to the leading edge (4), as well 
as at half of the blade height close to the leading edge (5). 
The user might later identify these force peaks also in the 
real manufacturing process. 

4.2 Use case II: Data-driven quality prediction 

The second use case demonstrates the quality prediction 
from machine and sensor data directly in manufacturing. 
The prediction of the workpiece quality during or right after 
completion of the manufacturing process enables the 
reduction of inspection efforts in the later quality assurance, 
and an in-depth process investigation and optimization. 

The previously introduced blisk demonstrator was 
manufactured on a DMG MORI DMU 65FD machine tool. 
The machine was equipped with a Siemens Sinumerik 
840D sl v4.8 control and an integrated Tool Control Center 
(TCC) for the measurement of bending moments and axial 
forces acting on the spindle. The production was carried out 
according to the milling strategy described at the beginning 
of chapter 4. After manufacturing the blisk was measured 
on a Zeiss Prismo CMM with a rotary table. The profile 
deviations were measured at seven cross-sections at half 
of the height of each block for each blade (see Figure 12). 

Extensive process data acquisition took place as part of the 
investigation. Machine-internal signals, such as the position 
data of the axes, as well as the load signals of all drives 
were recorded by the edge data acquisition at the machine 
tool at a frequency of approximately 250 Hz. In addition, the 
software carried out the acquisition of critical metadata such 
as workpiece identification data, NC-program structure and 
tool parameters. The signals of the machine integrated TCC 
were acquired synchronously from the edge data 
acquisition via an MQTT and UDP interface at a frequency 
of 2500 Hz. The data acquisition software generated files in 
parquet format (batches), each assigned to an operation, 

and sent them to the core domain scheduling services via 
MQTT protocol. The results of the subsequent CMM 
inspection process were exported as CSV files and 
imported into the digital twin framework via a microservice 
running on a Siemens SIMATIV 127e IPC. The CSV file 
contained the points of the measured profiles and their 
deviation from the nominal. 

Inside the core domain, all data dispatched by the edge 
data acquisition was processed in the batch layer. Each 
captured batch was prepared and scheduled for analysis by 
a scheduling service. The data was then resampled and 
processed by a technology microservice. The service 
performs geometrical operations, such as kinematic 
transformations, and reproduces the physical 
manufacturing process and its technological effects, such 
as tool and workpiece deflection or tool wear etc.. It thereby 
translates the acquired machine and sensor data into 
process and workpiece condition data. The generated 
results were stored in the analytical data store in the form 
of parquet files. 

Figure 12 shows the digital twin information, which was 
returned to the user domain. Part A of the figure shows the 
Y axis load of all finishing operations. As an example, axis 
reversals can be identified from the image, which resulted 
in slight notches on the component. Part B of the figure 
shows the cutting force calculated from the bending 
moment recorded by the TCC during finishing. The cutting 
force is in the range of 0-90 N. The force signal shows the 
same force peaks at the blade tip and half of the blade 
height, which were already identified in the process design 
use case. Part C of the figure shows the calculated profile 
deviations of the blisk component. The profile deviations 
are in the range of 0-100 µm and indicate the need for 
further process optimizations in three positions close to the 
leading edge of the blade. 

In order to evaluate the resulting quality prognosis, CMM 
measurements were carried out and used for validation. 
The measured points contained in the CMM result data 
were associated with the results of the quality prediction by 
a microservice in the batch layer. Figure 12 shows the good 
agreement of the quality prediction with the CMM 
measurement across the seven profiles for the first blade. 

Figure 12: Digital twin carrying machine, process and part condition data (A) ; Comparison of predicted and measured 
profile deviations of the manufactured blisk component (B) 
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An average deviation of -1 µm to +5 µm was achieved 
between measurement and prognosis across the seven 
measured profiles. Depending on the crosssection, the 
standard deviation was between 3-4 µm. Remaining 
deviations are due to possible errors in the measurement, 
e.g. probe radius compensation or technological effects not 
taken into account in the analysis. 

5 OUTLOOK 

Continuous further development of the presented digital 
twin framework and its implementation will take place. 
Major focus will be on the area of orchestration, such as the 
semantic data model and the integration of asset 
administration shells (AAS). Furthermore, focus will be on 
the implementation of advanced streaming analytics 
pipelines and machine learning applications inside the 
stream and ML layer of the lambda architecture. 

6 SUMMARY 

The presented paper introduces a digital twin framework for 
the machining domain, along with an exemplary 
implementation of the major functional elements. The 
framework is a combination of a big data lambda 
architecture and the digital twin framework of ISO 23247. 
The implementation comprises specific solutions in the area 
of process simulation, cloud infrastructure, batch and 
stream data processing, as well as machine data 
acquisition. We have presented first batch processing 
applications in the area of process design and predictive 
quality. The use cases clearly illustrate, that the presented 
framework implementation is a key enabler on the way to a 
complete and data-consistent digital twin in machining. 
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