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Abstract 

Manufacturing process monitoring is showing great advances thanks to increasing sensor availability and 
the development of edge to cloud IoT systems. However, the application of this technology in industry is 
slowed down due to cyber security policies, the coexistence of old manufacturing systems, with limited 
monitoring capabilities, with newer and fully monitored ones, and the lack of application-oriented 
functionalities. In this paper, a fast and automated machine tool characterization procedure, called 
Fingerprint, is presented, that allows determining useful Key Performance Indicators of the status of 
machine tools based on IoT technologies. The paper also presents the implementation of this technology 
in industrial environment. 
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1 INTRODUCTION 

The machine tool sector has been demanding for several 
decades the monitoring of the production process and the 
use of the data acquired to improve the production process. 
It is an old aspiration that has been covered in recent years 
by the so-called Industry 4.0 [Zhong 2017, Zheng 2018]. 
Thus, the latest generation machining centers incorporate 
sensors that capture internal signals from the machine tool 
(like positions, speeds, power) and integrate sensors to 
measure other variables of interest (like vibrations, 
temperatures). 

There are also more and more connectivity devices (Edge 
systems, Gateways ... the name changes depending on the 
level of action) that allow to collect and manage this 
information available at the controls. These systems can be 
incorporated by CNC suppliers (SIEMENS Sinumerik 
Edge), machine tool manufacturers (Celos by DMG Mori) or 
even third-party systems (ARTIS, SAAVY, etc.). These 
systems, in addition to collecting information of interest, 
allow sending information to centralized systems on servers 
or even in the cloud. 

Despite this significant evolution, in most cases, these 
systems are only limited to collecting information and 
providing rough production related Key Performance 
Indicators (KPIs): total power consumption, number of 
machined references, etc. Few applications use the 
collected information to determine more elaborated, and 
useful, data and apply it to optimize the manufacturing 
performance. Furthermore, the application of this type of 
technology in small and medium-sized companies is still an 
utopia, since they do not have the economic possibilities to 

renew their machinery [Frank 2019]. In this way, the need 
to apply the Industry 4.0 concept in manufacturing 
processes still arises, adapting it to the possibilities of the 
multiple machining companies in the sector. 

These IoT technologies are the basis for the Zero Defects 
Manufacturing paradigm [Psarommatis 2019], since they 
provide information that can be used to determine the 
behavior of the manufacturing process as well as of the 
machine that performs it.  For example, part quality is 
directly affected by phenomena such as drive backlash 
[Wang 2015]. 

Normally, the machine tool supplier performs a series of 
measurements on the machine as validation tests, ranging 
from the geometric characterization of errors to the dynamic 
characterization of the drives. For example, in [Schwenke 
2008] different tests for the geometric characterization of 
machine tools are collected, classified as direct and 
indirect. Direct techniques allow measuring a single error 
component in each trial. These techniques can be based on 
artifacts (squares, calibrated rulers, patterns ...), on laser 
systems (interferometry) or on gravity systems 
(inclinometers). Due to the flexibility to measure elements 
of different lengths, laser technologies are predominant in 
recent years. As for indirect techniques, used for the 
detection of overlapping errors of two or more axes, those 
based on artifacts and on contour measurement (ball-bar) 
can be found. All these techniques, especially the direct 
ones and, specifically, those based on laser interferometry 
involve long preparation and measurement times.  

Regarding dynamic behavior of the machines, there are 
numerous tools that range from frequency analysis, such as 
modal analysis [Okubo 1982] and the obtention of transfer 
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functions of the drives [Vesely 2009], to the usage of 
monitoring tools (oscilloscopes) to analyze in detail the 
control signals and validate the operation of the machine. 
Again, these procedures are normally complex and require 
external equipment, leading to the need for expert 
personnel. 

These tests are normally carried out at the initial reception 
of the machine at the end-user's home and, barring major 
problems, they are rarely repeated. However, the reality is 
that the machine changes its behavior with its use and that 
critical variables related to the quality of the process, such 
as backlash, friction in the guides, etc. do not keep constant 
in time. For this reason, there is a need to design and 
implement a rapid and automated characterization 
procedure of the state of the main components of machine 
tools [Armendia 2019]. 

After the introduction, the second section presents the 
strategy adopted by the authors for the rapid 
characterization of the state of machine tools. The third 
section summarizes the implementation of the functionality 
in an industrial manufacturing plant. Finally, the fourth 
section presents the conclusions and next steps in this line 
of work. 

2 MACHINE TOOL FINGERPRINT 

2.1 Overall approach 

Machine tool status changes with time, elements degrade 
leading to maintenance problems but also affect 
manufacturing process performance and, hence, part 
quality. The control of the condition of the machine tool will 
impact manufacturing performance in both maintenance 
and process control activities. 

Data recorded during normal operation of the machine tools 
provides relevant production insights (manufactured part 
number, cycle times, power consumption, etc.). However, 
especially in machining processes, the impact of the 
manufacturing process in the recorded data is very high and 
it is difficult to isolate machine tool condition from it 
[Armendia 2016]. 

To overcome this issue, the authors propose to perform a 
repetitive and controlled sequence of movements, avoiding 
the effect of manufacturing process, that will provide 
relevant information about machine performance. To 
properly trace machine condition over time, the test, called 
Fingerprint for machine tools, needs to be fast, to avoid 
productivity reduction, and automated, to avoid new skill 
requirements for operators. 

2.2 Monitoring system 

The proposed functionality is based on a monitoring system 
that collects internal variables from the PLC of the machine. 
This monitoring system is prepared to collect data through 
Ethernet connection from the major CNC manufacturers 
(SIEMENS, Heidenhain, FAGOR, FANUC, etc.) and can 
also integrate data coming from external sensor, like 
accelerometers. 

The monitoring system is able to collect data continuously 
for manufacturing control purposes (normally 1Hz rate is 
enough) but, when a Fingerprint test is executed, it 
automatically detects it and changes the acquisition rate to 
properly monitor the test. Acquisition frequency is increased 
up to 50 Hz, depending on the controller of the machine. In 
order to reach this cadence, OPC type communication is 
avoided, and proprietary protocols are used instead. 

The monitoring system allows integration of post-
processing stages so that KPIs can be calculated after 
every test (Fig. 1). In addition, the system provides data 
upload possibilities to both local servers and cloud 
platforms. 

2.3 Test procedure 

As mentioned, a sequence of movements for machine tool 
axes and spindles have been defined and programmed in 
G-code. This sequence consists of: 

 A back and forward movement with each of the 
studied machine tool axes. Programmed feedrate 
and displacement must ensure that a constant 
velocity regime is reached.  

 A circular interpolation with each pair of studied 
linear axes, emulating a ball-bar test [Cep 2018]. 

 Rotation at constant velocity with each of the 
studied machine tool spindles. Usage of spindle-
integrated accelerometers is considered, and it 
allows calculating more KPIs. 

To execute the machine tool Fingerprint test, the operator 
only needs to load the part program that contains the 
movement sequence and execute it. Cycle time of the 
Fingerprint test depends on the stroke of the studied axes, 
but it is usually around 3 minutes. The impact in machine 
tool availability is negligible and the test can be easily 
included in a potential weekly maintenance activity plan. 

2.4 Post-processing 

Raw data acquired during the Fingerprint test is temporally 
stored and post-processed, so that useful KPIs are 
calculated.  

A Digital Twin of machine tool feed drives is used as a 
reference for raw data post-processing. A simplified two-
mass model of feed drives is applied, with motor inertia as 
the first mas and load inertia, reduced at motor shaft, as 
second mass. A rigid transmission is assumed, and 
backlash is considered between both masses. The 
following KPIs are obtained: 

 Friction of each machine tool axis and spindle. 

 Backlash of the feed drive of each axis. 

 Maximum torque of each axis. 

 Inversion peak of each axis 

 Vibration indicators for spindles: RMS, peak, and 
different frequency bands depending on spindle 
bearing configuration. 

 

 

Fig. 1: Fingerprint KPI obtention procedure overview. 
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As can be observed, most KPIs have physical meaning so 
machine tool operators and maintenance technicians can 
easily relate its values with the condition of specific machine 
tool components. 

2.5 Data management and visualization 

KPIs are serialised into a JSON file that is locally stored but 
can also be automatically uploaded to a data management 
system located on the cloud. Fig. 2 shows the high-level 
architecture of this platform. 

Before being sent to the cloud, JSON files are converted 
into the MTConnect XML format. This means that data 
coming from different machines is structured into a 
standardized vocabulary and semantics, and fingerprints 
could be sent to a third party capable of parsing this 
information model. 

Data is sent from the edge to the cloud through a Message 
Queue Telemetry Transport (MQTT) topic. The use of a 
local store on the edge and a remote topic on cloud makes 
the communication path more robust, preventing the loss of 
information over unreliable networks, and allowing a 
temporary interruption of the transmission for maintenance 
reasons.  

MQTT is a lightweight IoT publish/subscribe protocol, 
where messages are sent by publishers (the edge 
monitoring systems) and consumed by subscribers (the 
platform’s processing data pipeline), via an intermediate 
MQTT broker (Eclipse Mosquitto). This middleware ensures 

a decoupling in the communication between publishers and 
subscribers, which improves the flexibility of the system, 
and the possibility of using load-balancing and autoscaling 
strategies when the number of messages received on the 
platform increases. 

Message processing on the platform is done with a flow-
based runtime environment (Apache NiFi), which is a 
software application where logic is defined graphically by 
interconnecting a number of specific nodes. Flow-based 
programming fits very well in IoT scenarios as part of 
integration architectures for the interoperation of systems 
and services. This programming paradigm promotes a high-
level, functional view of the processes, provides an 
inherently concurrent environment, and facilitates the 
testing, monitoring, and logging of processes. 

Regarding storage, the platform follows a polyglot 
persistence pattern, where several types of repositories are 
created for the various aspects of data exploitation. The 
management of multiple databases to combine their 
advantages is a useful strategy in big data scenarios 
[Khine, 2019]. The platform uses a time series database 
(InfluxDB) for time series visualization capabilities, 
relational databases for storing medata, fingerprints (SQL 
Server), and data quality information (PostgreSQL), an 
OLAP database (SQL Server Analysis Services) for 
handling aggregated operational data, and a file server for 
raw file storage. 

 

Fig. 2: Data management system implementation. 

 

Tab. 1: Data quality metrics. 

Dimension Metric Problem identification 

Completeness 

Global Completeness Missing values 

Completeness by Observations Missing observations 

Completeness by Variables Missing variables 

Uniqueness Time Uniqueness Repeated timestamps 

Accuracy 

Range Out-of-range values  

Consistency Values out of the 80% confidence interval 

Typicality Values out of the 95% confidence interval 

Moderation Values out of the 99% confidence interval 

Timeliness Timeliness Excessive waiting time between observations 

Conformity 
Names Wrong variable names 

Format Different data formats 
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Data quality management is performed at different levels in 
the platform. Fingerprint tests are checked as they arrived 
in the system for missing data and outliers in the values. 
When an issue is detected in a fingerprint, a notification is 
shown in the application interface prompting the user to 
repeat the test. In addition to in-line data quality checks, a 
batch process is executed periodically on a weekly basis to 
calculate a data quality index for each machine with all the 
fingerprints obtained over that period of time. This index is 
calculated as the arithmetic mean of a set of metrics which 
evaluate data quality from different perspectives. These 
metrics can be seen in Tab. 1. 

Information is presented to the user through a web interface 
(ASP.NET Core MVC). The site uses a responsive web 
design (based on the Bootstrap framework) to allow pages 
to be displayed in different devices (desktop, mobile, 
tablets) by automatically adapting its contents to the target 
screen. Authentication into the system can be done either 
through a single sign-on approach (using Azure Active 
Directory credentials), or with a customised username and 
password (both methods use Microsoft Identity Server as 
the authorization mechanism). 

3 IMPLEMENTATION IN INDUSTRIAL 
ENVIRONMENT 

The system has been implemented in the installations of a 
leading manufacturer from the wind energy sector. As a first 
step, the functionality was included in 4 machine tools with 
very different characteristics, whose specifications are 
summarized in Tab. 2. 

The monitoring system has been implemented using an 
industrial PC Beckhoff C6015, which is installed inside the 
electrical cabinets of each of the machines (Fig. 3a). The 
PC is connected to each machine control through Ethernet. 
In the case of older machines, with Sinumerik 840D 
Production Line (PL) controllers, no Ethernet connection is 
available. In these cases, HILSCHNER NL-50 MPI to 
Ethernet converters have been used (Fig. 3b) after 
checking that they do not affect monitoring performance. To 
make available to required variables and allow the 
monitoring system to collect them at high frequency, the 
PLC programs of the four machines have been accordingly 
adapted. It must be highlighted that a library has been 
developed to facilitate and minimize risks in the modification 
of machine tool PLC programs. 

In collaboration with the operator of each machine tool, the 
part program defining the Fingerprint test has been adapted 
for the four machines. Different features like axes names, 
stroke of the movements, programmed feedrate and 
machine specific commands have been adjusted according 
to the respective machine characteristics (Tab. 1). 

After the implementation, some validation tests are 
performed to check that the software is correctly configured, 
and the defined sequence of movements is appropriate. In 
addition, the validity of the calculated indicators is 
evaluated. In this step, feedback of machine tool operator 
and maintenance technicians is critical to obtain the best 
results. Fig. 4 shows an example of raw torque data 
obtained during the positioning of the X axis of the BOST 
boring machine. The indicators calculated after this 
sequence are 34.56 N·m of maximum torque and 7.77 N·m 
of torque equivalent to friction. 

Once the Fingerprint functionality is ready, it has been 
included in the weekly maintenance activities of the 
company so that its periodic execution is guaranteed. This 
way, the evolution of the different indicators over time can 
be closely traced and, hence, the condition of the main 
components of the machines can be controlled. In the first 
months after system implementation, a learning stage is 
carried out in which the quality and robustness of the 
indicators is checked and the thresholds to determine faulty 
machine tool status are defined. Tab. 3 presents the 
average and Relative Standard Deviation (RSD) of the 
indicators calculated for the four machines during the first 
four months after the implementation of the functionality 
(from 2021/01/06 to 2021/04/30). It can be observed that 
the system is able to accurately determine mechanical 
characteristics of the machine components. This should be 
highlighted for variables like backlash, which is a micron 
level resolution characteristic that is accurately determined 
using and indirect method like the one proposed. Even if 
further tests will help improving the statistics, most 
indicators show a robust evolution, with small variation in 
time (<20% of RSD). A few of the KPIs, especially the 
backlash and inversion peak, present higher RSD values 
due to their low values of the indicators, which are close to 
system resolution. The RSD of the indicators should be 
reduced as far as more test results are included in the 
study. 

The observed robustness has been assumed as enough to 
determine normality and upper and lower threshold values 
for the different indicators. These limits will allow 
identification of anomalous results in future tests and early 
detection of machine tool performance degradation. As 
mentioned, due to the early stage of this implementations 
these limits will be further updated as far as more tests are 
performed in a short term. 

 

Tab. 2: Machine tools included in the industrial demonstrator. 

Builder Model Process 
Number 
of axes 

Number of 
spindles 

Working 
volume 

CNC model 

BOST BOSTRAM2 Horizontal Boring  3 1 13 x 4 x 2.5 m3 
SIEMENS Sinumerik 

840D SL 

BOST VTL55CY Vertical Turning 4 1 8 x 13 x 2 m3 
SIEMENS Sinumerik 

840D SL 

Kehren Ri12-4 Vertical grinding 3 1 1.5 x 2 x 1 m3 
SIEMENS Sinumerik 

840D PL 

PFAUTER P2800G Profile grinding 3 2 2 x 1 x 2 m3 
SIEMENS Sinumerik 

840D PL 
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Following the implementation approach shown in Fig. 2, the 
data locally stored in the four machines after each 
Fingerprint test is sent and stored in an external server. 
Every time a Fingerprint test is executed and properly 
updated to the data management system, a notification is 
sent to the correspondent users. If the uploaded Fingerprint 
test present anomalies (data quality metrics, extremely 
deviated KPIs) the notification includes a warning to review 
the indicators and a request to repeat the test. 

The platform provides a web interface to show fingerprint 
results through various monitoring dashboards, as it is 
indicated in Fig. 2. First, results of independent Fingerprints 
are visualized by plotting values normalized to unity value 
each KPI nor on spider graphs, including normalized upper 
limits which have been calculated in the characterisation 
stage (Fig. 5a). In case any indicator gets close or gets over 

  

a) b) 

Fig. 3: Hardware used in the implementation: a) 
Beckhoff C6015 Industrial PC; b) HILSCHNER NL-50 

MPI to Ethernet adapter installed in a SIEMENS 
Sinumerik 840D PL CNC. 

   

Fig. 4: Torque raw data (N.m) during the positioning 
sequence of the X axis of the BOST BOSTRAM2 boring 

machine. 

Tab. 3: Statistics of the indicators collected during the period from 2021/01/06 to 2021/04/30 for the 4 machine tools 
included in the demonstration case (RSD: Relative Standard Deviation in %) 

Axis/ 

Spindle 
Indicator name 

BOST BOSTRAM2 BOST VTL55CY KEHREN Ri12-4 PFAUTER P2800G 

Mean RSD Mean RSD Mean RSD Mean RSD 

A1 

Backlash (µm) 15 26.7 9 11.1  -   -   -   -  

Inversion Peak (µm) 14 35.7 14 7.1  -   -   -   -  

Max. Torque (N·m) 37.0 4.2 33.1 1.8 710.2 11.1 33.3 8.0 

Friction (N·m) 4.4 9.8 4.2 7.0 28.9 2.4 15.5 3.1 

A2 

Backlash (µm) 17 17.6 28 7.1 19 57.9 100 2.0 

Inversion Peak (µm) 13 23.1 83 10.8 10 80.0 24 29.2 

Max. Torque (N·m) 35.9 4.1 47.2 11.1 60.9 23.2 7.8 4.0 

Friction (N·m) 7.9 6.2 9.9 4.1 18.8 12.6 2.3 2.9 

A3 

Backlash (µm) 5 20.0 16 6.3 1 0.0 39 7.7 

Inversion Peak (µm) 6 16.7 4 0.0 0 0.0 14 21.4 

Max. Torque (N·m) 58.6 3.2 20.2 1.1 32.3 33.7 3.5 16.0 

Friction (N·m) 14.9 4.3 17.3 1.4 6.6 20.8 5.2 4.1 

A4 

Backlash (µm) 12 8.3  -   -   -   -   -   -  

Inversion Peak (µm) 6 50.0  -   -   -   -   -   -  

Max. Torque (N·m) 35.1 3.2  -   -   -   -   -   -  

Friction (N·m) 6.3 6.8  -   -   -   -   -   -  

S1 Friction (N·m) 22.9 8.9 24.6 3.5 1.9 8.0 3.7 13.7 

S2 Friction (N·m)  -   -   -   -   -   -  0.4 3.9 
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the determined limit this will be easily identified and, in 
addition, the system will send a notification to the 
correspondent users. Second, the evolution of the KPIs in  

time can be studied in time-series graphs (Fig. 5b). This 
allows for deeper analysis of KPIs, including trend detection 
and possibility to correlate KPI values with maintenance 
events. 

 

a) 

 

b) 

Fig. 5: Fingerprint result visualization at SmartFactoryCell: a) Independent Fingerprint result using spider graphs (KPIs 
normalized to unit value); b) time-series showing KPI evolution.  
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4 CONCLUSIONS AND NEXT STEPS 

A fast and automated machine tool characterization 
procedure, called Fingerprint, has been developed that 
allows the determination of KPIs related to the condition of 
the most critical elements of machine tools. The 
identification of machine tool condition will serve as a 
reference for increasing the Overall Equipment 
Effectiveness (OEE) inside manufacturing companies since 
it will allow the implementation of preventive maintenance 
actions. That will minimize production breakdowns, and 
ensuring optimal manufacturing conditions, towards Zero-
Defect-Manufacturing. 

A sequence of movements has been defined and 
implemented through a part program so that the machine 
operator only needs to load and run it to perform the tests. 
A complete monitoring and data management infrastructure 
has been set so that, every time the Fingerprint part 
program is running, the required data is monitored, 
appropriately post-processed, managed and visualized. 
The system sends notifications in case of relevant events 
(test execution, anomalous test, KPI above defined limits) 
to the correspondent users. 

The Fingerprint functionality has been implemented in 4 
machine tools of a real industrial scenario. Different 
generation machine tools have been addressed to 
overcome data availability and communication limitations. 
During the first months after the implementation, in a 
learning or characterization stage, Fingerprints have been 
weekly executed in the four machines. An analysis of the 
obtained indicators shows that the obtained indicators are 
robust enough to determine normal condition of the 
machine as well as thresholds that determine anomalous 
condition. 

In the next months, Fingerprint tests will still be executed in 
a weekly basis by the maintenance personnel of the 
company with the following objectives: confirm and improve 
robustness of the calculated indicators, fine tuning of the 
thresholds, identification of machine faulty condition and 
correlation of indicator evolution with the performed 
maintenance actions. To support this work, apart from the 
possibility to send notifications, the system provides a web-
based interface that allows fast overview of Fingerprint 
results as well as complete study of each indicator 
evolution.  

In addition, further functionalities will be implemented in the 
use case like the calculation of KPIs linked to spindle 
condition after the integration of accelerometers and the 
control of data quality through the defined metrics (Tab. 1). 
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