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Abstract 

The comparison between measured and simulated machining forces enables the evaluation of workpiece 
quality, process stability, and tool wear condition. To compute the machining forces that occur, 
mechanistic cutting force models are typically used. The cutting force coefficients (CFCs) of mechanistic 
force models are directly linked to the mechanics of chip formation and, thus, depend on the tool-
workpiece combination and on the prevailing cutting conditions. CFCs are usually identified via the 
average cutting force identification method, which requires the execution of cutting tests under defined 
test conditions. Hence, determining CFCs for different cutting conditions is time-consuming and 
expensive. In this paper, the performance of an instantaneous CFC identification approach based on 
Bayesian Optimization during the machining of arbitrary workpiece geometries is studied. Bayesian 
Optimization is well suited for global optimization problems with computationally expensive cost functions. 
The simulated cutting forces are calculated using a dexel-based cutter workpiece engagement simulation 
and the actual cutting forces are measured during the machining process using a dynamometer. Thus, 
an efficient identification of CFCs could be achieved. 
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1 INTRODUCTION AND LITERATURE REVIEW 

Milling processes have been continuously improved over 
the past decades through enhancements in machine 
dynamics [Zaeh 2019], tool design [Stone 2014], and 
process control [Schmucker 2021]. Many of these 
advances have been achieved using so-called digital 
process twins [Haenel 2019] or virtual machining 
simulations [Altintas 2005], which, among other things, 
estimate the machining forces that occur. The calculation of 
the process forces supports, on the one hand, the selection 
of the process parameters and the tool path planning. On 
the other hand, the comparison between simulated and 
measured forces allows to monitor the workpiece quality 
[Scippa 2013; Denkena 2012], to evaluate the process 
stability [Aslan and Altintas 2018], and to determine the 
current tool wear condition [Altintas and Aslan 2017].  

For computing milling forces, analytical, empirical, 
numerical, and mechanistic cutting force models are 

available. Mechanistic methods are of recent origin and are 
suitable for the use in machining processes with complex 
tool geometries and tool-workpiece engagement 
conditions. In addition, mechanistic models are able to 
consider effects of process noise such as runout [Wimmer 
2018], tool wear, and material inhomogeneities [Ehmann 
1997]. All these effects are covered by the so-called cutting 
force coefficients (CFCs), which must be calibrated based 

on measured machining forces. Usually, the calibration 
involves recording cutting forces under various defined 
cutting conditions (e.g., feed per tooth, cutting speeds), and 
then identifying the model parameters using optimization or 
curve fitting algorithms.  

Cutting forces during machining can be measured via direct 
or indirect techniques. Direct methods are characterized by 
using piezoelectric dynamometers, spindle integrated force 
sensors, or strain gauges close to the cutting region. But 
they can also be estimated indirectly from motor current 
measurements, encoder data [Yamada 2017], or vibrations 
[Albertelli 2016]. Conventionally, the so-called average 
cutting force identification method is used to determine the 
CFCs for mechanistic cutting force models. However, this 
approach usually relies on additional cutting tests due to the 
predefined experimental conditions. Consequently, this 
offline approach is time-consuming and costly and does not 
provide any information about the evolution of the model 
parameters during machining operations [Farhadmanesh 
and Ahmadi 2020].  

In order to detect the changes of the coefficients during 
machining or during the service life of a tool, two 
requirements arise for the identification method. 

1. Online capability:  The identification should be 

performed swiftly and parallel with machining 
operations. 
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2. Flexible identification: No customized experimental 

setup should be necessary, but the manufacturing of 
an arbitrary workpiece geometry shall be used for the 
parameter identification. 

CFCs of mechanistic force models are directly linked to the 
mechanics of chip formation and, thus, depend on the 
characteristics of the shearing action, friction on the rake 
face, and the ploughing action under the flank face 
[Farhadmanesh and Ahmadi 2020]. According to Grossi 
[2015], the following three approaches are available to 
study these effects and, therefore, to calibrate CFCs:  

1. Orthogonal Coefficient Identification 

2. Average Cutting Force Identification 

3. Instantaneous Cutting Force Identification 

Orthogonal Coefficient Identification 

In the orthogonal coefficient identification method, the 
CFCs are determined in turning tests and then transformed 
to oblique cutting conditions [Budak 1996]. Since this 
method requires not only special cutting conditions but also 
extra tools and workpieces, it can be denied online 
capability. Furthermore, orthogonal coefficients cannot be 
applied to milling operations with complex tool geometries 
(e.g., unequal pitch angles, serrated tools). Both 
requirements mentioned above − online capability and 
flexible identification − are therefore not fulfilled by this 
approach. 

Average Cutting Force Identification 

In the Average Cutting Force Identification (ACFI) method, 
CFCs are determined by performing linear regressions of 
the average cutting forces acquired at different feed rate per 
tooth settings. Hereby, the forces are averaged over one or 
more tool revolutions and, therefore, tool runout and 
instantaneous force modulations have no effect on the 
identified coefficients. In summary, it can be stated that this 
method is not suitable for the CFC identification when 
machining arbitrary geometries, and the introduced 
requirements are not satisfied here as well. 

Instantaneous Cutting Force Identification 

Among the above listed methods, only the instantaneous 
coefficient identification is suitable to detect the evolution of 
the force coefficients during the machining operation. In 
instantaneous approaches, the cutting constants are 
identified by fitting simulated and measured forces in the 
time domain [Grossi 2015]. In this case, the forces do not 
have to be measured at various feed per tooth settings but 
simulated and measured cutting forces must be 
synchronized in a first step. Various optimization 
approaches were already presented in the literature, which 
perform an instantaneous CFC determination after a 
successful synchronization [Wimmer 2018; Gonzalo 2010; 
Rivière-Lorphèvre 2017].  

Grossi [2015] have employed a genetic algorithm for the 
instantaneous CFC identification. By combining this with 
the compensation of the dynamometer dynamics via a 
Kalman Filter, they were able to determine speed-varying 
cutting force constants in high-speed machining 
applications. In addition, Farhadmanesh and Ahmadi 
[2020] have introduced three different identification 
methods for instantaneous CFC calibration. The presented 
Recursive Least Squares, Kalman Filter, and Extended 
Kalman Filter algorithms are suitable for a rapid 
synchronization and a subsequent recursive determination 
of the cutting force coefficients.  

All these approaches have in common that they rely on a 
prior synchronization of the cutting force simulation and 
measurement, and that they cannot handle varying cutter 

workpiece engagements (CWEs) in the identification data 
sets. 

Due to this, a novel identification method based on 
Bayesian Optimization is presented in this publication (see 
Section 3.2). This optimization method enables an efficient 
search of global extrema even for computationally 
expensive cost functions. To avoid a synchronization of 
measured and simulated cutting forces, the so-called 
Dynamic Time Warping is used as the error function in the 
optimization procedure (see Section 3.1). In addition, 
instead of a classical analytical cutting force model, a 
geometric, tri-dexel based CWE simulation (see Section 2) 
with subsequent conversion to cutting forces is used to 
allow an identification for arbitrary workpiece geometries as 
well. Finally, the presented procedure is compared with 
experimental results and it is evaluated whether the defined 
requirements − online capability and flexible identification − 
are met (see Section 4 and 5). 

2 PROCESS FORCE SIMULATION 

2.1 Mechanistic Force Model 

There are several mechanistic force models available in 
literature. One of the most widely used is the mechanistic 
cutting force model by Budak [2006], which is characterized 
by good adaptability and proven accuracy. The process 
force simulation of this publication is also based on this 
mechanistic model. Therefore, this approach will be 
presented in the following. 

The cutting force model describes for a point on the 𝑗th 

cutting tooth three differential force components, which are 
the tangential force component 𝑑𝐹𝑡𝑗, the radial force 

component 𝑑𝐹𝑟𝑗, and the axial force component 𝑑𝐹𝑎𝑗 (see 

Figure 1). In linear mechanistic modelling, all these force 
components are assumed to be linear functions of the 
instantaneous chip thickness: 

𝑑𝐹𝑡𝑗(𝛷, 𝑧) = [𝐾𝑡𝑒 + 𝐾𝑡𝑐ℎ𝑗(𝛷, 𝑧)]𝑑𝑧, 

𝑑𝐹𝑟𝑗(𝛷, 𝑧) = [𝐾𝑟𝑒 + 𝐾𝑟𝑐ℎ𝑗(𝛷, 𝑧)]𝑑𝑧, and (1) 

𝑑𝐹𝑎𝑗(𝛷, 𝑧) = [𝐾𝑎𝑒 + 𝐾𝑎𝑐ℎ𝑗(𝛷, 𝑧)]𝑑𝑧,  

where 𝐾𝑞𝑐 and 𝐾𝑞𝑒 (𝑞 ∈ {𝑡, 𝑟, 𝑎}) represent the cutting force 

and edge-force coefficients. In the context of this 
publication, only these six parameters are considered as 
CFCs. Runout parameters are neglected at this point.  

The axial and radial depth of cut 𝑎𝑝 and 𝑎𝑒, the number of 

teeth 𝑁, the cutter diameter 𝐷, and the helix angle 𝛽 

determine what portion of the tooth is in contact with the 
workpiece for a given angular orientation of the cutter  
𝛷 =  𝛺𝑡, where 𝛺 ist the angular speed 𝛺 = 2𝜋𝑛/60, 𝑡 is the 

time, and 𝑛 is the spindle speed in revolutions per minute. 

The immersion angle 𝛷 of tooth 𝑗 is measured with 
reference to the feed direction, which is the 𝑥-direction in 

Figure 1. This difference compared to the model of Budak 
[2006] was introduced to simplify the integration of the 
dexel-based CWE simulation (see Section 2.2) into the 
coefficient identification. Thus, the chip thickness is 
calculated based on the feed per tooth 𝑓𝑧 and the 

instantaneous immersion angle 𝛷(𝑧) at axial position 𝑧: 

ℎ𝑗(𝛷, 𝑧) = 𝑓𝑧 cos (𝛷(𝑧))  (2) 

Assuming that the position of the first cutting edge is known, 
the immersion angle 𝛷(𝑧) of the 𝑁 flutes can be calculated 

by  

 𝛷𝑗(𝛷, 𝑧) = 𝛷 + (𝑗 − 1)
2𝜋

𝑁
−

tan (𝛽)
𝐷

2

𝑧. (3) 
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The engagement limits of the individual cutting edges at the 
various axial positions are defined as follows: 

𝛷𝑠(𝑧) ≤ 𝛷𝑗(𝛷, 𝑧) ≤ 𝛷𝑒(𝑧) (4) 

The start and exit angles 𝛷𝑠 and 𝛷𝑒 are also dependent on 

the 𝑧-position and can also vary along the 𝑧-axis for more 

complex workpiece geometries. 

After transforming the differential cutting forces into the 
global tool coordinate system (𝑥 -, 𝑦 -, and 𝑧-direction, see 

Equation 6), an integration along the tool axis is carried out 
and the forces of all 𝑁 teeth are summed up: 

𝐹𝑥(𝛷) = ∑ ∫ 𝑑
𝑧2

𝑧1
𝐹𝑥,𝑗(𝑧,

𝑁
𝑗=1 𝛷),  

𝐹𝑦(𝛷) = ∑ ∫ 𝑑
𝑧2

𝑧1
𝐹𝑦,𝑗(𝑧,

𝑁
𝑗=1 𝛷), (5) 

𝐹𝑧(𝛷) = ∑ ∫ 𝑑
𝑧2

𝑧1
𝐹𝑧,𝑗(𝑧,

𝑁
𝑗=1 𝛷).  

For simple cutting conditions, the integration limits 𝑧1 and 

𝑧2, and the entry and exit angles 𝛷𝑠 and 𝛷𝑒 can be easily 
determined to solve these equations [Wimmer 2018]. 
However, this is not possible with arbitrary workpiece 
geometries and with changing CWEs. Due to this, this 
publication relies on a dexel-based CWE simulation, which 
is described in the following section. 

 

Figure 1: Geometry of an end-milling process 

2.2 Dexel-based Cutting Force Simulation 

CWE or material removal simulations have been in the 
focus of science for many years. These models operate by 
creating virtual representations of workpieces and 
removing any material that interferes with the cutter 
geometry of a tool, which is moved along a path [Armendia 
2019]. Many of these methods are quite computationally 
expensive, but voxel (“volume elements”) and dexel (“depth 
elements”) models have proven to be practical even in real-
time applications [Witt 2019]. The use of the ModuleWorks 
API (API: application programming interface) is particularly 
widespread in the area of machining simulation [Armendia 
2019; Haenel 2019]. This C/C++ library is based on the so-
called tri-dexel model, where a volume is approximated by 
parallel line grids in three perpendicular planes. This 
publication makes use of the ModuleWorks software 
module as well. 

In the developed process force simulation, the toolpath is 
divided into individual cutter locations. The distance 
between these positions defines the accuracy of the CWE 
simulation and, thus, of the cutting force calculation. This 
spacing should not be greater than the feed per tooth 𝑓𝑧, so 

that the effects of the individual cutting edges can be 
studied, and the instantaneous force modulation can be 
computed.  

At each discrete tool position, it is calculated which area of 
the cutter is currently engaged (see exemplary green CWE 
marking in Figure 2). In addition, the tool is discretized into 
individual elements in radial (𝑑𝜃), and tool profile direction 

(𝛽). Furthermore, the elements are constrained in axial 

direction by the element height (𝑏𝑒𝑙). Elements belonging to 

cutting edges are called cutting elements and contribute to 
the cutting force calculation. In contrast, the non-cutting 
elements are neglected in the simulation.  

 

Figure 2: Tool discretization along the tool profile of a 
helical end-milling cutter 

Figure 2 shows two different coordinate systems. The tool 
coordinate system with the axes 𝑥, 𝑦, and 𝑧 is aligned with 

the tool orientation. Additionally, the illustration depicts the 
local {𝑟𝑡𝑎} element coordinate system (radial, tangential, 
and axial axis), whose orientation depends on the position 

on the tool profile.  

If a cutting element is engaged, its contribution to the cutting 
force is calculated as follows:  

{

𝐹𝑟,𝑒𝑙
𝐹𝑡,𝑒𝑙
𝐹𝑎,𝑒𝑙

} = {

𝐾𝑟𝑐
𝐾𝑡𝑐
𝐾𝑎𝑐

} ℎ𝑒𝑙𝑏𝑒𝑙 + {

𝐾𝑟𝑒
𝐾𝑡𝑒
𝐾𝑎𝑒

} 𝑏𝑒𝑙. (6) 

The depth of the element engagement ℎ𝑒𝑙 is calculated 

using equation 2. In this case, the immersion angle 𝛷 
equals the angular position of the elements 𝜃𝑒𝑙. Since the 

local discrete cutting forces of an element are determined 

in the  {𝑟𝑡𝑎} coordinate system, a coordinate transformation 
must be performed: 

{

𝐹𝑥,𝑒𝑙
𝐹𝑦,𝑒𝑙
𝐹𝑧,𝑒𝑙

} = 𝑻{

𝐹𝑟,𝑒𝑙
𝐹𝑡,𝑒𝑙
𝐹𝑎,𝑒𝑙

} , 𝑻 = {
−cos (𝜃𝑒𝑙) −sin (𝜃𝑒𝑙) 0
−sin (𝜃𝑒𝑙) cos (𝜃𝑒𝑙) 0

0 0 −1

}. (7) 

After performing this transformation, all element forces 

share a common coordinate system, the {𝑥𝑦𝑧} tool 
coordinate system. Therefore, the proportions of the 
elements 𝑁𝑒 can be summed up numerically: 

{

𝐹𝑥
𝐹𝑦
𝐹𝑧

} = ∑ {

𝐹𝑥,𝑒𝑙
𝐹𝑦,𝑒𝑙
𝐹𝑧,𝑒𝑙

}
𝑁𝑒−1
0 . (8) 

Elements that are not assigned to a cutting edge or that are 
not engaged do not contribute to the calculation of the 
cutting force. The element forces of these elements have 
the value 𝐹𝑞,𝑒𝑙 = 0 𝑁 (𝑞 ∈ 𝑥, 𝑦, 𝑧) in all three coordinate 

directions. 

2.3 Generic Process Forces as an Input Format for the 
Optimization 

The simulation approach presented in the previous section 
allows the estimation of cutting forces along arbitrary tool 
paths as a function of engagement ratios and CFCs. 
However, if the dexel-based simulation approach is to be 
used to calibrate these coefficients, an exchange format 
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between simulation and optimization is needed. For this 
purpose, so-called generic process forces (GPFs) have 
been introduced: 

{
  
 

  
 
𝑅𝐶𝑞
𝑇𝐶𝑞
𝐴𝐶𝑞
𝑅𝐸𝑞
𝑇𝐸𝑞
𝐴𝐸𝑞}

  
 

  
 

=  𝑻∑

{
 
 

 
 (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

(
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)
}
 
 

 
 

{
 
 

 
 
ℎ𝑒𝑙𝑏𝑒𝑙
⋮

ℎ𝑒𝑙𝑏𝑒𝑙
𝑏𝑒𝑙
⋮
𝑏𝑒𝑙 }

 
 

 
 

𝑵𝒆−𝟏
𝟎 , 𝑞 ∈ 𝑥, 𝑦, 𝑧. (9) 

With the help of the following equations, the cutting forces 
can be reconstructed from the GPFs. Thus, these GPFs 
(𝑅𝐶 / 𝑅𝐸: radial generic cutting / edge forces, 𝑇𝐶 / 𝑇𝐸: 

tangential generic cutting / edge forces, 𝐴𝐶 / 𝐴𝐸: axial 

generic cutting / edge forces) are suitable to avoid a 
repetitive execution of the simulation during the 
optimization. 

{

𝐹𝑥
𝐹𝑦
𝐹𝑧

} = {

𝑅𝐶𝑥
𝑅𝐶𝑦
𝑅𝐶𝑧

𝑇𝐶𝑥
𝑇𝐶𝑦
𝑇𝐶𝑧

𝐴𝐶𝑥
𝐴𝐶𝑦
𝐴𝐶𝑧

} {

𝐾𝑟𝑐
𝐾𝑡𝑐
𝐾𝑎𝑐

} + {

𝑅𝐸𝑥
𝑅𝐸𝑦
𝑅𝐸𝑧

𝑇𝐸𝑥
𝑇𝐸𝑦
𝑇𝐸𝑧

𝐴𝐸𝑥
𝐴𝐸𝑦
𝐴𝐸𝑧

} {

𝐾𝑟𝑒
𝐾𝑡𝑒
𝐾𝑎𝑒

} (10) 

Thus, the calculation of actual simulation forces based on 
the GPFs is suitable for use in the error function of the 
optimization described in the following section. 

3 IDENTIFICATION OF CUTTING FORCE 
COEFFICIENTS 

The aim of this publication is to present how the coefficients 
of the mechanistic cutting force model can be determined 
based on captured process forces and a geometric CWE 
simulation. In each iteration step, it is necessary to 
determine the error between simulated and measured 
forces. Usually, least squares methods are used for this 
purpose in the literature [Grossi 2015; Gonzalo 2010; 
Farhadmanesh and Ahmadi 2020]. However, in order to 
avoid a synchronization of measured and simulated data 
and to allow varying engagement conditions during 
coefficient estimation, Dynamic Time Warping (DTW) is 
used in this work as the error function (see Section 3.1). 
Since DTW is a computationally complex error function, a 
Bayesian Optimization approach is used for identifying the 
CFCs. This optimization technique is explained at the end 
of this chapter (see Section 3.2). 

3.1 Dynamic Time Warping 

DTW is a well-known method to find an optimal alignment 
between two given time series. In simple terms, the 
sequences are distorted − warped − in a nonlinear way to 
fit them to each other (see Figure 3 a). Originally, DTW was 
used for the comparison of different speech patterns in 
automatic speech recognition. But DTW has also been 
successfully used in areas such as data mining and 
information retrieval, to automatically deal with temporal 
deformations and different speeds associated with time-
dependent data [Müller 2007]. In addition, DTW was 
applied in the field of machining, namely in chatter detection 
[Yesilli 2019]. 

DTW is an algorithm which is able to measure the similarity 
between two time series even if they have dissimilar length:  

�̂�𝑞 = {�̂�𝑞,1, �̂�𝑞,2, … , �̂�𝑞,𝑘 , … , �̂�𝑞,𝑛} , 𝑛 ∈ ℕ and  

𝐹𝑞 = {𝐹𝑞,1, 𝐹𝑞,2, … , 𝐹𝑞,𝑙 , … , 𝐹𝑞,𝑚} , 𝑚 ∈ ℕ.   (11) 

The simulated (�̂�𝑞,𝑘) and the measured (𝐹𝑞,𝑙) forces can be 

arranged to form an 𝑛-by-𝑚 plane, where each grid point 

corresponds to an alignment between the elements �̂�𝑞,𝑘 and 

𝐹𝑞,𝑙. A so-called warping path 𝑊 (see Figure 3 b) aligns the 

elements so that the distance between the signals is 
minimized.  

𝑊𝑞 = {𝑊𝑞,1,𝑊𝑞,2, … ,𝑊𝑞,𝑤 , … ,𝑊𝑞,𝑝} , 𝑤 ∈ ℕ   (12) 

The length 𝑝 of the warping path fulfills the constraint  

𝑚 ≤ 𝑝 ≤ 𝑛, if 𝑚 ≤ 𝑛 is assumed [Yesilli 2019].  

Various metrics are available for evaluating the distance 
between two points. In the implementation associated to 
this publication, the Euclidean distance is used: 

𝑑(�̂�𝑞,𝑘 , 𝐹𝑞,𝑙) = ||�̂�𝑞,𝑘 − 𝐹𝑞,𝑙||2 = √(�̂�𝑞,𝑘 − 𝐹𝑞,𝑙)
2 , 𝑞 ∈ 𝑥, 𝑦, 𝑧. (13) 

Once a distance measure is selected, DTW can be defined 
as a minimization problem over the warping paths: 

𝐷𝑇𝑊(�̂�𝑞,𝑘 , 𝐹𝑞,𝑙) = min (∑ 𝑑(𝑤𝑤))
𝐿
𝑤=1 , 𝑞 ∈ 𝑥, 𝑦, 𝑧.  (14) 

The length of the warping path 𝐿 is determined by the ratio 

of 𝑛 and 𝑚. The distance measure 𝐷𝑇𝑊 is calculated 
separately for the three force directions 𝑥, 𝑦, and 𝑧 and then 

averaged as follows: 

𝑒𝐷𝑇𝑊 = 
𝐷𝑇𝑊(�̂�𝑥,𝑘,𝐹𝑥,𝑙)+𝐷𝑇𝑊(�̂�𝑦,𝑘,𝐹𝑦,𝑙)+𝐷𝑇𝑊(�̂�𝑦,𝑘,𝐹𝑦,𝑙)

3
.  (15) 

The calculation of the value 𝑒𝐷𝑇𝑊 (see equation 15) is 
applied as the error function in the Bayesian Optimization, 
which is explained in the following section. 

 

Figure 3 : Schematic drawing of Dynamic Time Warping 
based on Müller [2007]; a) warping / distortion of a time 
series; b) exemplary warping path 

3.2 Bayesian Optimization 

Bayesian Optimization (BO) is an optimization method that 
is well known from the field of Automated Machine 
Learning. In Automated Machine Learning it is used for the 
selection of so-called hyperparameters. Hyperparameters 
determine how well artificial intelligence algorithms can 
learn from the provided training data. For instance, the 
number of hidden layers, the number of neurons in each 
hidden layer, the activation function, and the learning rate 
of artificial neural networks are hyperparameters. The 
challenge in determining these hyperparameters is that the 
execution and the validation of the learning procedure are 
computationally intensive. Since the identification of CFCs 
in combination with DTW shows the same challenge, it is 
reasonable to apply BO here as well. 

Sequential Model-Based Optimization 

BO is a sequential model-based optimization approach 
mainly composed of a surrogate model and an acquisition 
function. The surrogate model is intended to represent 
objective functions, such as: 

𝑥 = argmin𝑓(𝑥).     (16) 
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The first step (see Table 1) is to draw an initial sample for 𝑥 

(e.g., sample point 𝑥1 in Figure 4) and to evaluate the error 

function for this choice. 

Table 1 : Sequential Model-Based Optimization based on 
Archetti and Candelieri [2019] 

step description 

1 initial sample of the surrogate model 

2 acquisition function identifies new promising 
points 

3 evaluation of the objective function 

4 update of the surrogate model 

5 checking the termination criteria:  

 if fulfilled go to step 6 

 else go back to step 2 

6 return the “best seen” solution 

 

Subsequently, it is the task of the acquisition function to 
select at which point the next comparison between the 
actual error function and the surrogate model should be 
performed (e.g., 𝑥2 or 𝑥3 in Figure 4).  

Two different approaches, exploration and exploitation, can 
be used for this second step of the sequential optimization. 
Exploration means sampling at locations where the 
prediction uncertainty is high (see A in Figure 4). On the 
contrary, exploitation describes the idea of sampling in 
areas with high fidelity (see B). 

 

Figure 4 : Schematic drawing of Bayesian Optimization 
using a probabilistic surrogate model based on Archetti and 

Candelieri [2019]: 𝑓(𝑥): error function; 𝜇(𝑥) mean of the 

surrogate model ; 𝜎(𝑥): standard deviation; A: exemplary 
area for exploration; B: exemplary area for exploitation 

After each selection of new samples, the distance to the 
real data (see Equation 15) is evaluated and the surrogate 
model is updated based on these observations (see steps 
3 and 4). Thus, the approximation of the surrogate model to 
the actual error function becomes progressively closer and 
the uncertainty in the prediction decreases. This procedure 
is pursued until a chosen termination criterion is reached 
and the “best seen” solution is returned as the optimization 
result (see steps 5 and 6). 

Surrogate Model 

To enable the distinction between exploration and 
exploitation areas, the surrogate model must provide a 
prediction probability. Due to this, a probabilistic surrogate 
model, a multivariate Gaussian Process (GP), has been 
used in the implementation associated with this publication. 
A GP is specified by its mean function  

𝜇(𝑥) = 𝔼[𝑓(𝑥)]     (17) 

and by the corresponding covariance function 

𝑘(𝑥, 𝑥′) = 𝔼[(𝑓(𝑥) − 𝜇(𝑥))(𝑓(𝑥′) − 𝜇(𝑥′))].  (18) 

The covariance function (see Equation 17 and 18) is also 
called kernel in the context of GPs. However, it must be 
mentioned that BO is not necessarily based on a GP as a 
surrogate model. Other probabilistic approaches or also 
deterministic functions are applicable [Archetti and 
Candelieri 2019]. 

Acquisition Function 

The acquisition function determines at which point, 𝑥, the 

agreement of the surrogate model and the actual error 
function should be evaluated next. Hence, this type of 
function determines the distribution between exploration 
and exploitation. Various acquisition functions are available 
in the literature, starting from early implementations such as 
“Probability of Improvement” [Kushner 1964] but also more 
recently published approaches such as “K-Optimality” [Yan 
2018]. In the identification of CFCs presented here, the 
“Expected Improvement” approach is used. This acquisition 
function evaluates the expected amount of improvement in 
the objective function, ignoring values that cause an 
increase in the prediction uncertainty [Archetti and 
Candelieri 2019]. 

In the following section, it is shown how this sequential 
optimization method can be used for the determination of 
the CFCs, and how this combination of a surrogate model 
and an acquisition function leads to a rapid and reliable 
coefficient identification. 

4 EXPERIMENTAL RESULTS 

4.1 Test Setup and Design of Experiments 

To investigate the BO based CFC identification, the 
experimental setup depicted in Figure 5 was used. A Kistler 
dynamometer (type: 9257B) was mounted on the machine 
table of a milling center GROB G352T. During cutting tests 

with various process parameters (see Table 2), the spindle 
was solely moved in 𝑥-direction for feed. 

 

Figure 5 : Test setup for CFC identification 

In order to provide a broad database for the evaluation of 
the coefficient identification approach, 23 machining tests 
were performed. On the one hand, the process parameters 

spindle speed 𝑛 and feed rate 𝑣𝑓 and, on the other hand, 

the CWE conditions were varied. The radial depth of cut 𝑎𝑒 
was increased from 4 mm to 16 mm and the axial cutting 
depth 𝑎𝑝 from 3 mm to 5 mm. This has resulted in quarter, 

half, three-quarter, and full immersion cuts and, thus, the 
cutting forces were acquired at a wide range of engagement 
ratios. 

X

Y

Z

dynamometer

workpiece

adapter plate

tool
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Table 2: Test plan for the identification of the cutting force 
coefficients 

test 

no. 

𝒗𝒇 

in mm/min 

𝒏 

in rev/min 

𝒂𝒑 

in mm 

𝒂𝒆 

in mm 

1 500 2000 3 16 

2 350 2000 3 16 

3 650 2000 3 16 

4 750 3000 3 16 

5 400 1600 3 16 

6 500 2000 4 16 

7 500 2000 5 16 

8 500 2000 3 12 

9 350 2000 3 12 

10 650 2000 3 12 

11 750 3000 3 12 

12 400 1600 3 12 

13 500 2000 3 8 

14 350 2000 3 8 

15 650 2000 3 8 

16 750 3000 3 8 

17 400 1600 3 8 

18 500 2000 3 4 

19 350 2000 3 4 

20 650 2000 3 4 

21 750 3000 3 4 

22 400 1600 3 4 

23 500 2000 3 16 

 

The workpiece material and the tool were not modified 
during the experiment. The workpiece material was 1.1730 
carbon tool steel (C45U), and a solid carbide three flute 
end-milling cutter (Miller OptiMill-Uni M3033) with a 
diameter of 16 mm and a helix angle of 30° was used for 
the cutting experiments. The supply of cooling lubricant was 
switched off. 

4.2 Evaluation of the coefficient identification 

Figure 6 shows the measured and simulated cutting forces 
in 𝑥-, 𝑦-, and 𝑧-direction for test no. 1. The simulation was 

performed according to the descriptions in Section 2 and on 
the basis of the identified CFCs using the BO approach (see 
Table 3).  

 

Figure 6 : Measured (𝐹𝑥,𝑚𝑒𝑎𝑠, 𝐹𝑦,𝑚𝑒𝑎𝑠, 𝐹𝑧,𝑚𝑒𝑎𝑠) and simulated 

cutting forces (𝐹𝑥,𝑠𝑖𝑚, 𝐹𝑦,𝑠𝑖𝑚, 𝐹𝑧,𝑠𝑖𝑚) in 𝑥-, 𝑦-, and 𝑧-direction 

for test no. 1 

It can be clearly seen that there is a good agreement 
between the simulated and the measured values. In all 
three directions, both amplitude and shape are well 

approximated. The presented result is already achieved 
after a calculation time of 7.3 s. The required optimization 
time to achieve comparable results was significantly higher 
when using Genetic (GA) or Particle Swarm (PSA) 
algorithms with 119.0 s and 72.9 s, respectively. 

 

Figure 7 : Required time for the identification run using 
different optimization methods for test no. 1; computing unit: 
Intel Core™ i7 CPU with 1.80 GHz 

Additionally, a second instantaneous identification result is 
listed in Table 3. In this identification run, all 23 process 
parameter settings were considered instead of individual 
cutting conditions. At least one tool revolution from each 
test was incorporated into the identification data set. This 
identification setup can be compared to the acquisition of 
cutting forces on arbitrary workpiece geometries with 
changing CWEs. The simulation data were created 
according to the experimental conditions to provide generic 
process forces as the second data source for the 
optimization. The advantage of using DTW as error function 
is that no time-consuming and error-prone synchronization 
between the two time series, measured cutting forces and 
simulated generic process forces, has to be performed. 

Table 3: Identified cutting force coefficients for two different 
optimization runs  

method 𝑲𝒓𝒄 

in 

N/mm2 

𝑲𝒓𝒆 

in 

N/mm2 

𝑲𝒕𝒄 

in 

N/mm2 

𝑲𝒕𝒆 

in 

N/mm 

𝑲𝒂𝒄 

in 

N/mm 

𝑲𝒂𝒄 

in 

N/mm 

test no. 1 

BO 1142.6 47.7 1500.5 56.7 311.0 9.4 

PSA 1200.0 55.5 1500.0 46.1 200.0 19.3 

GA 1188.7 46.8 1500.1 55.6 238.58 16.1 

test nos. 1−23 

BO 1067.6 11.3 2018.5 27.7 209.7 8.7 

PSA 1058.0 11.1 2082.3 29.7 303.7 4.2 

GA 1027.9 13.2 2032.0 27.2 270.7 5.8 

ACFI 1016.0 25.5 2108.0 27.0 409.2 1.5 

 

Even with this enlarged input data set, BO optimization can 
be performed much faster than the optimizations based on 
GA or PSA algorithms. The time required was only 46.1 s 
compared to 4560.1 s (GA) and 4287.8 s (PSA).  

 

Figure 8 : Required time for the identification run using 
different optimization methods for test nos. 1−23; 
computing unit: Intel Core™ i7 CPU with 1.80 GHz 
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Figure 9 shows the low-pass filtered (cut-off 
frequency = 1kHz) measured cutting forces and also the 
simulated values based on the coefficients identified via BO 
and ACFI. For better visibility, only the 𝑥- and 𝑦-axis cutting 

forces of the machining tests 7 to 9 are shown. It can be 
noted that the agreement between simulated and measured 
forces is not inferior for the BO method compared to the 
widely used ACFI approach. Even to the contrary, the 
normalized root-mean-square error compared to the 
measured forces is reduced from 7.5 % to 7.3 % by using 
BO. This is where the advantage of the introduced 
instantaneous CFC determination becomes apparent, as 
different CWE conditions can be considered during 
identification. 

5 CONCLUSION AND OUTLOOK 

Within this publication a novel identification method is 
presented to identify cutting force coefficients for 
mechanistic force models and to monitor their evolution 
during machining operations. Conventional CFC calibration 
methods, e.g., ACFI, require executing cutting tests under 
defined test conditions, and processing them with offline 
curve fitting algorithms. This is time-consuming and costly. 

In the previous sections, it is shown that the combination of 
a dexel-based process force simulation (see Section 2) and 
an instantaneous identification approach based on BO (see 
Section 3) enables a rapid determination of the CFCs. For 
both, simple engagement conditions and more complex 
input data, this approach is significantly faster than other 
frequently used optimization methods, such as GA and PSA 
(see Figure 7 and Figure 8). The presented approach is 
therefore more suitable for online use in parallel with 
machining operations. As a result, tasks such as tool wear 
monitoring can be implemented more effectively and 
competitively with this approach.  

However, the estimation of the calculation time (see Figure 
7 and Figure 8) is subject to some uncertainties. On the one 
hand, the execution of heuristic methods is not 
deterministic, and, on the other hand, the measured time 

depends on the computing system used. Moreover, it 
should be mentioned that the approaches presented by 
Farhadmanesh and Ahmadi [2020] (see Section 1) show 
even higher convergence rates.  

But by combining the BO approach with DTW as the error 
function and a CWE simulation as the basis for the cutting 
force calculation, two additional advantages for the 
coefficient identification have been achieved: 

 The coefficient identification can be performed 
without prior synchronization of measured and 
simulated cutting forces. 

 The input data set may contain arbitrary CWE 
ratios. Changes within the identification data set 
are also acceptable, since the simulated GPFs 
contain these variations (see Section 2) as well. 

In summary, the introduced requirements for the CFC 
determination (see Section 1) − online capability and 
flexible identification − are fulfilled by the described method. 
Up to now, the instantaneous coefficient identification is 
only suitable for the determination of the cutting constants 
(𝐾𝑡𝑐, 𝐾𝑟𝑐, 𝐾𝑎𝑐) and the edge force coefficients (𝐾𝑡𝑒, 𝐾𝑟𝑒, 𝐾𝑎𝑒). 
Runout parameters and material inhomogeneities, as 
introduced by Wimmer [2018] and Ehmann [1997], are 
currently not taken into account. This would require minor 
modifications of the cutting force simulation and of the 
optimization problem. However, the basic structure of the 
procedure remains unaffected. In addition, the dynamics of 
the dynamometer were neglected in the identification 
process. This is only valid if the tooth passing frequency is 
well below the first natural frequency of the dynamometer, 
which can be confirmed for the executed experiments. In 
high-speed machining applications, the influence of the 
dynamometer dynamics must either be compensated in the 
test data or the cutting force model must be modified to 
include the additional dynamics in the system. Furthermore, 
within the scope of this publication, directly measured 
cutting forces were used. For an industrial application, the 
use of indirectly determined process forces, as presented 
in Schmucker [2021], would be beneficial. 

Figure 9 : Measured and simulated cutting forces in 𝑥-direction for test nos. 7−9 
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