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Abstract 

The increasing availability of data recording solutions in the field of machining in combination with major 
developments in Machine Learning and Artificial Intelligence enable new approaches towards 
optimization in the industrial environment. In the aviation industry, critical components must fulfil 
extremely high quality standards. This requires a stable and error-free manufacturing process, as well as 
an extensive geometrical compliance, what is until now verified by long-lasting coordinate measuring 
machine (CMM) inspection. This publication shows how machine data analysis can contribute to reduce 
CMM measurement effort and thus decrease component cycle time. For this purpose, production machine 
data from an aircraft engine Inconel compressor blisk blade 5-axis milling operation was recorded and 
analysed by subsequent application of machine learning algorithms to predict the geometric 
measurement characteristics. 
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1 INTRODUCTION AND MOTIVATION 

In the production of each component in the machining 
industry, it is necessary to meet the required specifications 
of the technical drawings in order to ensure the desired 
functionality and durability. With regard to the geometric 
requirements, such as form and position tolerances, a 
measurement of the characteristics is always required in 
order to provide proof of compliance with the tolerances, 
which can often be carried out on a random basis. However, 
the higher the requirements for the component, the higher 
the percentage of measured components must be, which 
increases the measurement effort enormously. In the case 
of a compressor blisk (blade integrated disk) made of a Ni-
based superalloy for a passenger aircraft engine, each 
individual blade of the blisk (Fig. 1) must be measured on 
the finished product using a coordinate measuring machine 
(CMM). Depending on the complexity and number of blades 
to be measured, this takes between six and eight hours. 
Thus, there is a high savings potential by reducing the 
conventional measurements.  

To achieve this goal, it is necessary to evaluate data from 
the machining process in order to be able to predict the 
resulting geometry or the measured inspection 
characteristics. For this purpose, there are already 
analytical approaches that attempt to calculate all 
influencing variables by means of models in order to 
regress the geometry [Soori 2017] [Zeroudi 2012]. These 

models are able to predict the geometrical deviation for 
simpler processes with certain boundary conditions, as not 
all influencing factors that occur in series production can be 
covered. 

 

 Fig. 1: High pressure compressor blisk; surfaces 
machined by the blade milling process are shown in red. 

In addition, there are approaches that combine analytics 
with machine learning models in order to simplify the 
calculations. In this case, machining variables, like material 
removal rate, are calculated using a specially developed 
software and the resulting geometry is then predicted using 
machine learning models [Denkena 2016]. Similarly, in 
[Brecher 2019], calculations, such as determining the tool 
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speed, are carried out first before predicting the geometry 
using neural networks. [Klein 2020] does not calculate 
cutting parameters at all to regress geometrical 
characteristics with machine learning, although the basis is 
a honing process with a lower level of complexity than the 
considered milling process. These investigations show that 
machine learning models are generally capable of 
regressing geometries of machining processes. Therefore, 
this approach is investigated in the following for the 
prediction of geometrical characteristics of milled blisk 
blades. Due to the complexity of the process, the attempt is 
to avoid analytical models in this approach. 

Apart from the machine data, a decisive point for the 
resulting final geometry is the milling tool. There are already 
various approaches to predict the wear condition of tools, 
for example [Wiesch 2019]. However, this is based on the 
fact that the tools have different initial states or exhibit 
different wear behaviour. Due to low manufacturing 
tolerances in tool production with close-meshed controls as 
well as a fixed number of machining operations per tool, the 
influencing factor of the tool can be regarded as constant in 
the investigated blisk manufacturing process and can 
therefore be left out of the equation. 

2 MACHINING PROCESS 

The blades of a blisk are milled out of a solid material disc. 
Most of the material removal is done by roughing 
processes, for which different strategies can be used 
[Klocke 2012], followed by a geometry-forming finishing 
process. In general, a helical path is followed from the tip to 
the bottom of the blade (Fig. 2), through simultaneous axes 
movements, to machine the final geometry with the 
tolerances shown in Tab. 1. 

Previous investigations have shown that the influence of the 
rough machining is negligible, which means that only the 
finishing process is responsible for the geometry formation, 
which is therefore the core for the data evaluation in the 
following. The machining process is executed on a 5-axis 
milling machine with a Siemens 840D SolutionLine control 
and takes approximately one day in total. With the size of 
the manufactured blades, the machine inaccuracy is less 
than 2 µm. 

 

Fig. 2: Movements of the finishing milling tool [MMS 2019]. 

3 DATA RECORDING 

In a research environment, often many sensors are 
attached to the tool, the workpiece or generally in the 
machining area in order to record data during the machining 
process and gain information about the tool or the process 

itself. However, this approach can only be implemented to 
a limited extent in industrial series production. Due to fixture 
changes, tool changes and the guarantee of a smooth 
process, additional sensors cannot be installed close to the 
machining process. For this reason, the approach to use 
machine data only is pursued, which can already be 
provided by default as a basis for data analysis. This means 
that no changes have to be applied to an already 
established process and thus no further influencing factor 
is added that could be a disruptive factor for industrial series 
production. 

The Marposs Datalogger is used for data recording, which 
is installed on a laptop with connection to the machine via 
Ethernet. Using the S7COMM protocol, the following 
parameters can be recorded for each axis during the 
machining process: 

 Actual position: 
Direct axis measurement system 

 Target position: 
Setpoint of the interpolator 

 Encoder position: 
Indirect axis measurement system 

 Current consumption: 
Individually for each axis and the spindle 

 Temperature compensation: 
Individually for each axis and adjusted during 
machining 

 Overall compensation: 
Cross error compensation (changes due to tool 
position) plus temperature compensation 

In addition, the length of the tool and the NC code lines are 
recorded. The corresponding controller variable names, 
which are necessary for the recording, are taken from 
[Siemens 2017]. In total a number of 74 parameters are 
recorded with a mean distance between two data points of 
10 ms and saved as semi-structured data (csv files). 

After the machining process, the finished blisk is measured 
using a tactile probe on a coordinate measuring machine. 
The measurement process consists of several radial and 
axial plane scans of each blade which are used to evaluate 
the geometric characteristic deviations, listed in Tab. 1 with 
the associated typical tolerances and the standard 
deviations of the datasets. As an example, the measured 
variables chord length and stagger angle are illustrated on 
a blade in Fig. 3. The chord length parameter can be 
measured with an accuracy of 1.6 µm as an example. A 
CAQ system is used as measurement data storage, 
whereby the data subsequently can be merged with the 
machine data for the following analysis (Fig. 4). 

 

Fig. 3: Measured geometric characteristics examples from 
top view of the blade. 
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The recorded data all belong to the same component type 
with the identical raw material supplier and were all 
produced on the same machine. In total, the data of eleven 
blisks with 51 blades each are available, resulting in 561 
datasets. 

 

Fig. 4: Scheme of the data flow for model training and 
testing. 

4 DATA PREPERATION 

Due to the recording methodology and the process 
duration, the dataset of one component is split over several 
csv files. In the first step of data preparation, the 
corresponding data for one component must be identified 
and combined, followed by the marking of the finishing 
operations for further analysis. These two steps can be 
realised by means of unique NC code lines which occur in 
every recording. The final step of data slicing is to 
determine the associated data for the individual blade 
cycles. However, the slower data recording frequency of 
10 ms compared to the machine's interpolation cycle of 
2 ms poses a challenge. It is obvious that not every 
interpolation step of the machine can be recorded and 
consequently not every programmed line of the NC code, 
depending on the execution time. This is particularly the 
case with highly dynamic and fast machine movements, as 
here in the finishing process. Thus, special care must be 
taken to select code lines that are executed slowly enough 
to occur in each recording in order to perform an automated 
cutting process and thus ensure a constant basis for the 
following steps. 

 

Fig. 5: Approach from data preparation to the optimisation 
of the regression models. 

Subsequently, the deviations of the actual positions and the 
target positions as well as the encoder positions are 
calculated. From these results and the other recorded 
parameters, statistical values, such as maximum, minimum, 
median, mean, weighted average, standard deviation, 
variance, range, percentile, sum, skewness and kurtosis, 
are calculated afterwards and summarised into a feature 
dataset. Due to the recording rate, a frequency analysis of 
the data is not useful. The calculated features are scaled in 
the following with different methods to improve the model 
performance: scaling by minimum and maximum (MinMax), 
scaling by the absolute maximum (MaxAbs), 
standardisation (Standard), scaling by the range between 
the 25% and 75% of the data (Robust), normalisation and 
scaling by quantiles (Quantile). In the last step of data 
preparation, it is possible to reduce the number of feature 
dimensions, for which a principal component analysis 
(PCA) [Howley 2006] is used. The influence of a dimension 
reduction is explained below. Features and the associated 
targets result together in a complete dataset, which can 
then be split into the training and the test dataset. The entire 
process of data preparation up to the finished model is 
shown in Fig. 5. 

Tab. 1: Measurement characteristics with corresponding 
tolerances and the measurement standard deviation of the 

used dataset. 

Inspection 
characteristic 

Upper 
tolerance 

[mm] 

Lower 
tolerance 

[mm] 

Standard 
deviation 

[mm] 

Stacking axis 0.300 -0.300 0.071 

Blade profile 0.100 -0.100 0.014 

Chord length 0.300 -0.300 0.014 

Stagger angel 0.400 -0.400 0.039 

Bow 0.300 0.000 0.005 

Blade thickness 0.200 -0.200 0.033 

Leading edge A 0.200 -0.200 0.014 

Leading edge B 0.170 -0.170 0.008 

Leading edge C 0.150 -0.150 0.008 

5 PREDICTION OF THE GEOMETRIC 
CHARACTERISTICS 

5.1 Comparison of different regression models 

The prepared data is divided in a ratio of 75/25 for the first 
tests. This results in a number of 420 datasets to train the 
following models: 

 Multi-layer perceptron regressor (MLPR) 

 Decision tree regressor (DTR) 

 Support vector regressor (SVR) 

 k-nearest neighbours regressor (KNNR) 

 Gaussian process regressor (GPR) 

 Partial least squares regressor (PLSR) 

 Random forest regressor (RFR) 

The hyperparameters of the models are all optimised using 
a randomised and a grid search with cross-validation. Tab. 
2 shows the calculated mean absolute error (MAE) values 
over all geometrical characteristics for the optimised 
models using the scaled and non-scaled datasets. Among 
the four best results (marked in green) are the PLSR model 
with the non-scaled dataset, the GPR model with the 
MinMax-scaled dataset, the KNNR model and the RFR 
model each with the normalised dataset. Altogether, the 
RFR model produced the best results with a MAE of only 
0.061 mm. As not only the MAE over all geometrical 
characteristics is decisive for a good regression result, 
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Tab. 2: Mean absolute error (calculated from all nine features from Tab. 1) of all optimised regression models and all 
different scaled datasets. 

 MAE [mm] 

Model Non-scaled MinMax MaxAbs Standard Robust Normalised Quantile 

MLP 0.0100 0.0085 0.0113 0.0111 0.0239 0.0113 0.0086 

DTR 0.0095 0.0095 0.0096 0.0099 0.0089 0.0089 0.0102 

SVR 0.0164 0.0168 0.0162 0.0170 0.0168 0.0160 0.0169 

KNNR 0.0066 0.0075 0.0079 0.0079 0.0135 0.0065 0.0075 

GPR 0.0192 0.0077 0.0081 0.0560 0.4111 0.0103 0.0077 

PLSR 0.0078 0.0078 0.0078 0.0078 0.0078 0.0085 0.0078 

RFR 0.0064 0.0064 0.0064 0.0065 0.0064 0.0061 0.0065 

 

further investigation of the predictions of the best models 
will be carried out. Thus, in the next step, the characteristics 
are considered individually and the standard deviation of 
the MAE as well as the maximum error (MaxE) are added 
to the evaluation (Tab. 3). 

The largest MAEs and MaxEs are generated in the 
prediction of the stagger angle and the stacking axis. 
However, both characteristics are dependent on the raw 
material properties, especially the residual stresses 
released during the machining process. Since the material 
data are not included in the regression, this might result in 
larger errors. The RFR and the PLSR model show very 
good predictions regarding all other characteristics, 
resulting in MAEs in the single-digit micrometre range. 

Tab. 3: MAE, MaxE and standard deviation of the MAE of 
the prediction for all geometry characteristics (all values in 

mm). The best result for each characteristic is marked 
green. 

  KNNR GPR PLSR RFR 

Stacking 
axis 

MAE 0.014 0.030 0.023 0.013 

STD 0.025 0.033 0.029 0.018 

MaxE 0.363 0.174 0.200 0.158 

Blade 
profile 

MAE 0.003 0.016 0.003 0.003 

STD 0.003 0.010 0.002 0.003 

MaxE 0.032 0.070 0.016 0.034 

Chord 
length 

MAE 0.006 0.017 0.006 0.006 

STD 0.005 0.014 0.005 0.005 

MaxE 0.036 0.068 0.038 0.036 

Stagger 
angle 

MAE 0.014 0.029 0.019 0.013 

STD 0.014 0.023 0.016 0.012 

MaxE 0.091 0.134 0.096 0.063 

Bow 

MAE 0.002 0.007 0.003 0.002 

STD 0.002 0.004 0.002 0.002 

MaxE 0.019 0.021 0.010 0.010 

Blade 
thickness 

MAE 0.006 0.017 0.005 0.006 

STD 0.007 0.016 0.004 0.006 

MaxE 0.082 0.102 0.034 0.079 

Leading 
edge A 

MAE 0.004 0.019 0.006 0.004 

STD 0.004 0.011 0.004 0.003 

MaxE 0.021 0.043 0.024 0.017 

Leading 
edge B 

MAE 0.004 0.019 0.005 0.004 

STD 0.003 0.014 0.003 0.003 

MaxE 0.018 0.056 0.015 0.016 

Leading 
edge C 

MAE 0.004 0.031 0.004 0.004 

STD 0.003 0.017 0.003 0.003 

MaxE 0.019 0.068 0.014 0.017 

Also considering the MaxEs and the according tolerances 
from Tab. 1, the results are very accurate. The best 
algorithm overall, the RFR model, does not deliver the best 
results for all individual characteristics. For the 
determination of the blade profile and the blade thickness, 
the PLSR model generates the better predictions. The best 
total result can therefore be achieved by a combination of 
RFR and PLSR. 

In order to understand the approach of the RFR model and 
to gain an insight into the decision-making process, the 
proportionally most important features can be read out. This 
analysis shows that in particular the comparisons of the 
encoder positions with the actual positions turn out to be 
most decisive, especially the features of the rotational axis 
of the swing table. 

5.2 Influence of dimension reduction 

To investigate the influence of a dimension reduction, the 
RFR model is used as a baseline, as it generally performs 
best. With the help of a PCA, the cumulative explained 
variances are calculated for all datasets, as shown in Fig. 
7. This indicates the extent to which the variance of the 
complete dataset can be reflected by the reduced 
dimensions. Fig. 7 illustrate that for the non-scaled, 
normalised and robust-scaled dataset, a small number of 
dimensions, between five and 20, should be sufficient to 
achieve a good regression performance.  

 

Fig. 6: Comparison of the RFR model predictions based 
on different datasets generated with varying numbers of 

dimensions (PCA), based on the normalised dataset. 

To test this assumption, the RFR model is trained with the 
normalised dataset for different numbers of dimensions. 
The outcomes (Fig. 6) show that there is a negligible 
difference in performance for all used numbers of 
dimensions. 
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Fig. 7: Cumulative variance of all datasets as well as the original dataset for all possible PCA number of components. 

 

However, the non-reduced dataset produces an even better 
result than all reduced datasets. Consequently, it can be 
stated that good results can already be achieved with a 
small number of dimensions, which are completely 
sufficient for quick analyses. However, if the geometric 
deviations are to be predicted as accurately as possible, 
especially to minimize the MaxE, it is essential to use the 
non-reduced dataset. 

5.3 Influence of quantity of training data 

Another influencing factor on the results of the regression 
models is the splitting of the data. To investigate this point, 
Fig. 8 shows the RFR results for different divisions of the 
normalised dataset. It becomes clear that a minimum of the 
prediction error is reached at a proportion of 75%, which 
corresponds to the already used 420 training datasets. 
Consequently, it can be stated that underfitting occurs 
below this value and overfitting occurs above it. 

 

Fig. 8: Comparison of different train-test-split ratios for the 
RFR model with the normalised dataset. 

6 SUMMARY AND OUTLOOK 

This paper describes the prediction of blade geometry 
characteristics based on machine data from blisk series 
production, without the usage of additional sensors. The 
deviations of the machined geometry can be predicted very 
precisely with machine learning models. A combination of 
RFR and PLSR models is particularly suitable for the 
regression of conventional blade measurements, 
considering the right data selection and preparation. The 
results presented here provide a good baseline for future 
measurement reduction in blisk blade series production, 

however, further steps are necessary to achieve the 
objective: 

1. In addition to temperature compensation, the 
inclusion of temperature values 

2. Improvement of the prediction of stacking axis and 
stagger angle 

3. Proof of the prediction accuracy of the algorithms 
for a further manufactured number of pieces 

4. Proof of the independence of the prediction from 
the raw material supplier 

5. Proof of the independence of the prediction from 
the machine (series production on several 
identical machines) 

6. Definition of confidence limits for the prediction 
7. Fulfilment of the requirements in [SAE 2015] for 

the introduction of an alternative inspection 
frequency plan 

As already mentioned in chapter 5.1, it is reasonable to 
assume that by including the raw material properties in the 
data analysis, the prediction errors of the stacking axis and 
the stagger angle could be reduced. This approach could 
also have a positive effect on the independence of the 
prediction from different raw material suppliers and 
therefore represents the next development step. In addition, 
other methods of data preparation will be investigated and 
the relevance of other machine parameters will be 
examined to improve the prediction as well as to generalise 
the method for further component types and machines. 

In addition, the decision-making process of the RFR shows 
that further investigations need to pay closer attention to the 
rotational axis of the machine's swing table. 
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