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Abstract 

Approaches to detect energy efficiency measures are associated with time consuming analysis requiring 
expertise. Against this background, this paper presents an expert system to identify potentials for 
improving the energy efficiency of metal cutting machine tools based on measurement and meta data of 
35 machines. For this purpose, it is necessary to determine energy states of machine tools and control 
strategies of their support units. Therefore, unsupervised and supervised learning algorithms are applied 
and evaluated. Based on energy states, control strategies and descriptive statistics, performance 
indicators are developed for enabling automatic selection and prioritization of application-dependent 
efficiency measures. 
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1 INTRODUCTION 

Due to rising energy prices, legislative pressure, and 
increasing environmental awareness, energy efficiency in 
manufacturing is gaining importance [Bunse 2011]. Cutting 
machine tools represent a share of 1 to 3 % or 200 to 
700 TWh of the world's electrical energy demand, which is 
in the range of Germany’s electrical energy demand in 2016 
according to [Denkena 2020; Umweltbundesamt 2021]. 

Machine tools are a reasonable starting point for improving 
energy efficiency in the manufacturing industry, as they 
often have high energy losses and hold a significant energy 
saving potential [Denkena 2020]. Therefore, machine tool 
operators are faced with the challenge of taking measures 
to minimize the energy demand of their production 
machines. Approaches to identify energy efficiency 
measures are associated with time-consuming 
measurement data analysis or simulations requiring 
expertise [Denkena 2020; Petruschke 2020]. Due to 
insufficient assessment of the economic potential, market 
failures, and organizational barriers, a discrepancy 
between the achievable and the actual energy efficiency 
level, which is called the energy efficiency gap, occurs 
[Jaffe 1994]. In the case of machine tools, there is also a 
discrepancy between an increasing availability of energy 
efficient technologies on the one hand and implemented 
measures in the industry on the other hand [Denkena 2020; 
Petruschke 2020]. [Posselt 2016] clusters barriers to the 
implementation of energy efficiency measures in all sectors 
into the five categories transparency, priority, economy, 
capacity, and fragmentation. These barriers could result in 
lack of knowledge regarding possible energy efficiency 
measures, undervaluation of a measure’s potential or its 

limited implementation due to deficient process know-how 
[Sorrell 2000; IEA 2012; Posselt 2016]. 

At the same time, advances in computer technology, the 
increasing amount of available data, and the growing 
opportunities opened by machine learning turn machine 
learning into a highly economically, socially, and 
strategically relevant topic [Döbel 2018]. 

Against this background, this paper presents the expert 
system, ETA-ExSys, which identifies potentials for 
improving the energy efficiency of metal cutting machine 
tools in operation and provides the user with a list of 
prioritized measures including a monetary assessment. It is 
developed based on the Cross Industry Standard Process 
for Data Mining (CRISP-DM) and uses electrical load 
profiles as well as meta data of metal cutting machine tools 
as input parameters. Following the introduction, the paper 
is structured according to CRISP-DM, which consists of six 
phases, in which we explain the particularly relevant 
process steps in detail [Wirth 1998]. Section 2 gives an 
overview of the business and data understanding, 
followed by data preparation and modeling and 
evaluation in section 3. The deployment of the developed 

models in ETA-ExSys and a subsequent discussion follow 
in section 4. Finally, a summary and conclusion are 
provided in section 5. 

2 BUSINESS AND DATA UNDERSTANDING 

The first step in CRISP-DM is the business 
understanding, in which we describe the initial situation for 

our research work. This is followed by an explanation of the 
available database in the data understanding phase. 
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2.1 Business Understanding 

To derive energy efficiency measures from measurement 
and meta data, it is necessary to determine the energy 
states of machine tools and control strategies of support 
units such as cutting fluid supply or machine cooling 
systems. This analysis has so far been done manually. The 
required measurement data can be obtained from short-
term mobile measurements, as demonstrated in 
[Petruschke 2020], whereas meta data can be collected 
from technical data sheets, type plates, or by interviewing 
machine operators. 

The energy demand of the machine tool, which is required 
for the subsequent estimation of the savings potential, is 
determined via the average active power in the respective 
energy state and its corresponding time share. So far, the 
different energy states have been identified by defining 
static threshold values in order to determine their respective 
time shares. [Petruschke 2020; Petruschke 2021] Various 
approaches can be found in the literature for analyzing load 
profiles to identify the energy states. [Petruschke 2021] 
provide an overview of approaches for identifying energy 
states on machine and factory level. In addition to the level 
of detail of the breakdown of energy states, a distinction is 
also made according to the degree of automation found in 
the respective approach. [Petruschke 2021] 

In literature, a variety of terms and definitions are used for 
the different energy states of machine tools [Denkena 
2020]. The energy states are determined by the states of 
the main and support unit switches [ISO 2017]. When both 
the main and support units, in the following referred to as 
components of a machine tool, are switched on and 
workpieces are produced within the specified tolerance and 
cycle time, this energy state is called working [VDMA 2019] 
or processing [ISO 2017]. The energy state operational is 
characterized by a higher active power than in the standby 
state and a lower active power than in working. No 
workpieces are processed during the states standby and 
operational. The operational state is often unplanned due 

to irregular events, e.g., a longer waiting time for the 
workpiece to be machined. The machine tool can change 
with minimum time delay between the two energy states 
operational and working. In standby, the main switch of 

the machine tool is typically on and spindles and axes are 
taken out of the control circuit. In addition, support units are 
partially in switched off. In the energy state off, the main 

switch as well as the main and support units are switched 
off. Transitioning between different energy states 
constitutes a transition state. Powering up, for example, 
describes the transition from energy state standby to 
working. [ISO 2017; VDMA 2019] In this paper, we 
consider the energy states standby, operational and 
working. The energy state off is only considered in the 

context of organizational energy efficiency measures, as it 
does not provide any added value regarding the energy 
efficiency of components. 

To increase energy efficiency, both component-based and 
organizational measures can be implemented on machine 
tools. The reduction of non-value adding energy states of 
the entire machine tool such as standby or operational 

state is, e.g., an organizational measure [Eberspächer 
2017]. An example of a component-based measure is 
optimizing the nominal power of a low-pressure cooling 
lubricant pump to avoid overdimensioning [ISO 2017]. 

In addition to the energy demand of the machine tool and 
its individual components in the various energy states, the 
prevailing control strategies of the respective components 
are also decisive for the evaluation of the savings potential. 
Different control strategies are applied to pumps, fans, and 

refrigeration systems for example. These different control 
strategies in turn result in different load profile 
characteristics, which according to [Kuhrke 2011; Denkena 
2020] are divided into stationary and non-stationary 
profiles. Within the framework of the developed approach, 
we distinguish three forms of load profiles: stationary, 
referred to as constant load profiles as well as non-
stationary ones, which are subdivided into discrete and 
continuous load profiles. In most cases, support units with 
a fixed speed have constant load profiles that are 
independent of the operating state. Such units can include, 
among others, oil extraction units, chip conveyor systems 
and cooling and lubrication units. An example of a discrete 
load profile is a cooling lubricant pump that has only one 
operating point and is switched on and off. The main spindle 
and drives as well as variable speed pumps have a 
continuous load profile, e.g., due to acceleration and 
deceleration processes. [Kuhrke 2011; Denkena 2020] To 
identify the predominant control strategy of the respective 
component, load curves and load duration curves of the 
main power supply and the respective components have 
been manually analyzed so far [Petruschke 2020]. 

The respective measure can be evaluated based on the 
determined energy demand and control strategy. The 
savings potential is calculated using empirical values while 
taking meta data into account. Therefore, the selection of 
suitable measures depends on the knowledge and 
experience of the person carrying out the analysis. Selected 
measures are prioritized based on their expected 
respective costs and savings potential. 

Since the process of selecting and prioritizing energy 
efficiency measures is time-consuming and often requires 
expert knowledge, it poses a challenge for businesses 
operating machine tools. This challenge involves the 
maintenance and energy management departments in 
particular. Therefore, the presented expert system aims to 
contribute to reducing barriers to the implementation of 
measures by shortening, simplifying, and automating the 
process. The system boundary of the considered system is 
defined according to [Gontarz 2015; ISO 2017; ISO 2018] 
so that the machine tool is supplied with electrical energy 
and compressed air from outside the system boundary, as 
is often the case in practice. 

2.2 Data Understanding 

In the following, we start by covering the data 
understanding of the available data. To automatically 

determine energy states of machine tools and control 
strategies of support units, we apply and evaluate 
unsupervised as well as supervised learning algorithms. 

This is done using measurement data of 35 metal cutting 
machine tools with different configurations and production 
environments, obtained in the research project ETA-
Transfer. For each machine tool, the database contains 

active power data points of the main power supply and up 
to six other components, recorded at a sampling rate of 
1 Hz. A total of 4,300 hours of multivariate time series were 
recorded. Of these, 2,471 hours were labeled with energy 
states and 90 univariate time series with a total length of 
8,653 hours resulting from the support units were labeled 
with control strategies. The data were labeled manually by 
experts. In terms of the entire database, the energy state 
working has the largest time share with slightly more than 
60 %. The energy states operational and standby are 

represented at approximately 20 % each. [Petruschke 
2021] However, not all machine tools necessarily include all 
three energy states and their measurement periods may 
vary in length. As with the energy states, univariate time 
series were labeled manually with control strategies based 
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on the load profiles. Of the 90 labeled time series, 19 exhibit 
a constant load profile, 58 a discrete load profile and 13 a 
continuous load profile. In addition, nominal power, year of 
manufacture, machine type, shift operation, etc. can be 
used as meta data for the identification of energy efficiency 
measures. However, in our approach, we only use the 
nominal power due to inconsistant data availability. 

3 MODEL DEVELOPMENT AND EVALUATION 

The developed models aim to identify energy states and 
control strategies using supervised and unsupervised 
learning algorithms to evaluate their performance. Since the 
steps data preparation, modeling, and evaluation differ 

for the two identification tasks and the investigated machine 
learning approaches, the identification of energy states and 
control strategies are considered separately in the following 
sections. 

3.1 Energy States 

Since we consider the three energy states working, 
operational and standby, the task at hand is treated as a 

multiclass classification problem [Tewari 2005] for which we 
investigate the unsupervised and supervised learning 
algorithms listed in table 1. Unsupervised learning 
algorithms are used to find patterns in unlabeled data in 
order to classify it into clusters [Doleski 2020]. For these 
algorithms data processing steps were applied according to 
the flowchart shown in figure 1. Initially, the measurement 
data is filtered as stated by [Brownlee 2018] to eliminate 
outliers and reduce measurement noise. To select the most 
suitable filter, we investigate the effect of different filters 
with varying parameters on the performance of different 
unsupervised algorithms. The investigation compares the 
median filter, the Wiener filter and the Butterworth filter from 
the Python library SciPy [Virtanen 2020]. Since no energy 
state is severely underrepresented, the accuracy as 
described in [Grandini 2020] was used as a performance 
metric. For the examined time series, the filter and 
parameter study results in the highest accuracy when using 
the median filter with a filter width of 499 seconds. 

 

 

Unsupervised 
classification 

Filtering and 
scaling 

Evaluate quality of 
clustering 

Measurement 
data 

 

Labeled 
 data 

Start 

End 

Cluster 
assignment 

 
Fig. 1: Flowchart of unsupervised learning. 

Within subsequent data preparation, the filtered data is 
scaled due to the varied range of values. While some 
machine learning algorithms can only work properly with 
scaling, it could lead to faster convergence or increased 
accuracy for other algorithms [Müller 2017]. For scaling 
multivariate time series, different alternatives from the 
Python library scikit-learn [Pedregosa 2011] were 
examined. The best results for the available data in terms 

of accuracy were achieved by the normalizer, which treats 
the data of all measured components within one second as 
a vector and divides it by its norm [Hackeling 2014]. After 
preprocessing, the unsupervised learning algorithms listed 
in table 1 are applied to the data of all 35 machine tools 
using three clusters, one for each energy state. The clusters 
are assigned to the energy states standby, operational 
and working according to their average active powers. For 

evaluation, the average accuracies of the unsupervised 
learning algorithms are compared and the clustered load 
profiles are visually inspected, as exemplified in figure 2. 
After hyperparameter adjustment, the Gaussian Mixture 

algorithm achieves the best results with an average 
accuracy of 82.36 % along all 35 machine tools. 

  
Fig. 2: Exemplary energy state classification using 

Gaussian Mixture for visual inspection. 

Supervised learning uses labeled training datasets 
containing input as well as output values. This enables the 
trained models to assign new elements into existing classes 
[Doleski 2020]. In practice, the dataset is usually divided 
into a training set and a test set. The training set is used to 
train classifiers, while the test set contains unseen 
examples and is used to evaluate and compare the 
classifiers [Fernandes de Mello 2018]. There are several 
options for splitting datasets into a training and a test set. In 
this paper, we use Leave-One-Group-Out cross validation 
(LOGO CV) implemented in scikit-learn [Pedregosa 2011] 
for splitting the datasets. The LOGO CV is a modification of 
cross validation as described in [Kohavi 1995], which 
divides the data into groups each representing data from 
one machine tool. With the described database the LOGO 
CV performs a total of 35 iterations. In each iteration, 
training is performed with data from 34 machine tools and 
tested with data from the remaining machine tool, meaning 
each test run is performed with data from a different 
machine tool that is not included in the training data. This 
group splitting is necessary for preventing data leakage 
between training and test data and hence obtaining a 
representative performance estimation for unknown 
machine tools [Kaufman 2011]. Figure 3 shows the group 
splitting for the first five machine tools of the database (two-
color bars) as well as the distribution of manually labeled 
energy states (tricolor bar). 

 
Fig.3: Database insight and iterative model validation 

process for the identification of energy states. 
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As shown in [Brownlee 2018], the results of classifying time 
series data using supervised learning can be improved by 
using features based on a fixed window size. Consequently, 
we used the Time Series Feature Extraction Library 
(TSFEL) [Barandas 2020] for Python to calculate features 
and subsequently perform feature selection by deleting 
features that are not relevant to the target variable using the 
feature importance [Butz 2006]. Removing unimportant 
features results in faster and, in some cases, more accurate 
models [Kuhn 2013]. Furthermore, the window size for 
feature extraction was varied to find the best window size. 
Figure 4 shows an overview of the described process. 
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Setting the 
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Evaluate quality of 
classification 

Meassurement 
data 

Labeled 

data 
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End 
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No Best window 
size? 

 
Fig. 4: Flowchart of supervised learning. 

 After hyperparameter optimization using grid search 
[Müller 2017], the Random Forest Classifier achieves the 

highest average accuracy among the supervised learning 
algorithms with 83.78 % using a window size of 15 minutes. 
Thus, the accuracy of the Random Forest Classifier is 
slightly higher than that of the Gaussian Mixture. 

Moreover, since unsupervised learning methods do not 
undergo a training process, their accuracy is not affected by 
the amount of available training data. In contrast, 
supervised learning methods such as the Random Forest 
Classifier could potentially achieve a higher accuracy with 

more training data. 

3.2 Control Strategies 

 Since we assign constant, discrete, or continuous load 
profiles per univariate time series, we only investigate 

supervised learning algorithms for identifying the control 
strategy class. To investigate supervised learning 
algorithms for this task, we follow a similar approach to the 
one shown in figure 3. However, due to the small database, 
additional data is acquired by splitting the time series 
evenly. Dynamic Time Warping (DTW) is used for 
automatically ensuring the similarity of the original time 
series to time series splits [Yang 2019]. Through empirical 
investigation using the existing database, the following 
similarity condition is defined: 

|DTW| ≤ 1  (1) 

If time series sections meet this condition, they are included 
in an extended database with the same label as the original 
time series. Figure 5 shows the exemplary division of a time 
series into three sections. The first two sections from the 
left have a similar (continuous) load profile to the original 
time series according to the upper definition. In contrast, the 
right section shows a constant load profile and is thus not 
similar to the original time series. With this approach, the 
original database of 90 time series can be extended to 
include 12,332 time series sections. With further division, 
the quality of the classification starts to decrease because 
of the more difficult distinction of too short sections. 

Due to the unbalanced dataset, the weighted f1-score 
[Hammerla 2016] is additionally considered as a 
performance metric. The conducted studies indicate that 
the splitting of the time series has a beneficial impact on the 
model quality. After hyperparameter optimization using grid 
search [Müller 2017], the Support Vector Classifier 

achieves the best result with an average accuracy of 
95.65 % and an average weighted f1-score measure of 
95.55 %. 

 
Fig. 5: Time series split with calculated DTW. 

Tab. 1: Comparison of average accuracy of investigated algorithms for different classification tasks. 

classification task learning method algorithm average accuracy 

energy states unsupervised k-Means 75.65 % 

energy states unsupervised k-Shape 42.31 % 

energy states unsupervised Gaussian Mixture 82.36 % 

energy states supervised Logistic Regression 71.85 % 

energy states supervised k-Neighbors Classifier 76.77 % 

energy states supervised Support Vector Classifier 79.12 % 

energy states supervised Random Forest Classifier 83.78 % 

energy states supervised Linear Discriminant Analysis 79.88 % 

energy states supervised Gaussian Naive Bayes 60.59 % 

control strategies supervised Logistic Regression 89.87 % 

control strategies supervised k-Neighbors Classifier 81.84 % 

control strategies supervised Support Vector Classifier 95.65 % 

control strategies supervised Random Forest Classifier 87.32 % 

control strategies supervised Linear Discriminant Analysis 91.83 % 

control strategies supervised Gaussian Naive Bayes 92.97 % 
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4 DEPLOYMENT AND DISCUSSION 

The presented models for determining energy 
characteristics are deployed in ETA-ExSys to enable 
identifying and prioritizing energy efficiency measures. The 
model results are combined with energy key performance 
indicators (KPIs) to ensure a transparent recommendation 
process. The performance of ETA-ExSys is discussed 
subsequently. 

4.1 ETA-ExSys 

ETA-ExSys aims to assist in decisions regarding energy 
efficiency measures by providing them with recommended 
measures and their respective evaluations. The automated 
identification of suitable measures is based on energy KPIs, 
which are calculated using results from the preceding data 
analysis. The measures are selected from a pre-defined list, 
as will be further explained in the following. 

Energy KPIs 

As defined in [VDMA 2010], KPIs are employed for 
measuring progress of important goals or critical success 
factors. The following work defines a set of energy KPIs for 
evaluating the analyzed system regarding its energy 
consumption and identifying suitable energy efficiency 
measures. The presented energy KPIs are derived 
according to the business and data understanding in 
addition to existing KPIs in [Dehning 2019] and are 
calculated using statistical analysis of the measurement 
data. 

To provide a holistic evaluation of a given machine tool and 
identify unit-specific measures, we define energy KPIs on 
machine, and component levels, as shown in table 2. 

The maximum machine degree of utilization (𝑀𝑀𝐷𝑈) is 

defined as the ratio of the machine’s maximum active power 
𝑃𝑚𝑎𝑥 to its nominal power 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙. This conveys 
information regarding the dimensioning of the machine – 
e.g., a low 𝑀𝑀𝐷𝑈 could hint at an overdimensioned 

machine tool. 

Relative state-dependent time share (𝑅𝑆𝑇𝑆) and energy 

consumption (𝑅𝑆𝐸𝑆) establish the respective share of an 

energy state 𝑆 in the total operation time 𝑡𝑡𝑜𝑡𝑎𝑙 and energy 

consumption 𝐸𝑡𝑜𝑡𝑎𝑙. Both energy KPIs help in identifying 

optimization approaches regarding the energy states during 
machine operation. 

As with 𝑀𝑀𝐷𝑈, the maximum degree of utilization (𝑀𝐷𝑈𝑖) 
of a component 𝑖 is defined as the ratio of its maximum 

active power 𝑃𝑚𝑎𝑥,𝑖 to its nominal power 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑖 and 

carries information about its dimensioning. 

The relative energy consumption (𝑅𝐸𝑖) of a machine 

component 𝑖 relates its energy consumption 𝐸𝑖 to the 

machine’s total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙. This information 
assists in finding and prioritizing energy saving potentials 
for each component. 

Combining 𝑅𝐸𝑖 with 𝑅𝑆𝑇𝑆 results in the relative component 

and state-dependent energy consumption (𝑅𝐸𝑆𝑖,𝑆) of a 

component 𝑖 in an energy state 𝑆, which helps in spotting 

non-production losses. 

Another KPI for determining whether a component 𝑖 is being 

operated in a needs-based manner is the drive correlation 
(𝐷𝐶𝑖). As the magnitude of the correlation factor 𝑟 between 

the component’s and the drives’ operation within the 
machine tool, 𝐷𝐶𝑖 reveals how strongly the component 

operation is associated with the metal cutting process and 
can help in detecting non-production losses. The correlation 
factor 𝑟 is defined in [Kohn 2011]. 

Finally, the recuperation factor 𝑅𝐹 determines whether 

energy is recuperated from braking processes in the 
machine’s drives. This is implied, when the share of time 
with negative energy consumption 𝑡𝑅 exceeds 0.1 % of total 

operation time 𝑡𝑡𝑜𝑡𝑎𝑙. In this case, the proportion of 

recuperated energy 𝐸𝑅 of the total energy 𝐸𝑡𝑜𝑡𝑎𝑙 is also 

calculated. Otherwise 𝑅𝐹 is equates to 0. 

Tab. 2: Energy KPIs on machine and component levels.

.

Machine level energy KPIs Definition Component level energy KPIs Definition 

𝑀𝑀𝐷𝑈 

Maximum machine degree of utilization 
𝑀𝑀𝐷𝑈 =

𝑃𝑚𝑎𝑥
𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙

 
𝑀𝐷𝑈𝑖 

Maximum degree of utilization 
𝑀𝐷𝑈𝑖 =

𝑃𝑚𝑎𝑥,𝑖
𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑖

 

𝑁𝑃𝑇𝐹 

Non-production time factor  
[Dehning 2019] 

𝑅𝐸𝑖 

Relative energy consumption 
𝑅𝐸𝑖 =

𝐸𝑖
𝐸𝑡𝑜𝑡𝑎𝑙

 
𝑁𝑃𝐿𝐹 

Non-production load factor 
[Dehning 2019] 

𝑁𝑃𝐸𝐹 

Non-production energy factor 
[Dehning 2019] 𝑅𝐸𝑆𝑖,𝑆 

Relative component and 
state-dependent energy 
consumption 

𝑅𝐸𝑆𝑖,𝑆 = 𝑅𝐸𝑖 ∗ 𝑅𝑆𝑇𝑆 
𝐵𝐸𝑆𝐹 

Benchmark energy saving factor 
[Dehning 2019] 

𝑃𝐸𝑆𝐹 

Powering up and down energy saving 
factor 

[Dehning 2019] 
𝐷𝐶𝑖 

Drive correlation 
𝐷𝐶𝑖 = |𝑟| 

𝑅𝑆𝑇𝑆 

Relative state-dependent time share 
𝑅𝑆𝑇𝑆 =

𝑡𝑆
𝑡𝑡𝑜𝑡𝑎𝑙

 
𝑅𝐹 

Recuperation factor 
𝑅𝐹 =

{
 

 0,
𝑡𝑅
𝑡𝑡𝑜𝑡𝑎𝑙

< 0.1 %

|𝐸𝑅|

𝐸𝑡𝑜𝑡𝑎𝑙
,
𝑡𝑅
𝑡𝑡𝑜𝑡𝑎𝑙

≥ 0.1 %

 
𝑅𝑆𝐸𝑆 

Relative state-dependent energy consumption 
𝑅𝑆𝐸𝑆 =

𝐸𝑆
𝐸𝑡𝑜𝑡𝑎𝑙
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Energy Efficiency Measures 

Energy efficiency measures are selected from a catalogue 
of measures compiled from [CECIMO 2005], [Eberspächer 
2017] and [ISO 2017] and are divided into a component-
based section and an organizational section. Component-
based measures can only be selected when component-
specific measurement data is available. Organizational 
measures, however, can always be selected, even when 
only the main power supply had been measured. To be 
selected, each measure must fulfill a measure condition 
relating to a specific energy KPI – this also takes into 
consideration, whether the measure is already 
implemented in the system. For component-based 
measures, however, measurement data must first be 
available for the respective component. 

For comparison, measures are paired with a cost factor 𝐶𝑀 

and an energy saving potential factor 𝑆𝑃𝑀, which are mostly 

experience-based, as introduced in [VDI 1998]. Measures 
are identified according to the calculated energy KPIs as 
well as the recognized control strategy of the machine tool 
and ranked depending on their respective priority number 
𝑃𝑁. Measures relating to the control strategy are only 

recommended when an inefficient control strategy is 
detected from the measurement data. The component-
based priority number 𝑃𝑁𝑖 is calculated using the relative 

energy consumption 𝑅𝐸𝑖 of the corresponding component, 

as shown in (2). Component-based measures are selected 
and prioritized as illustrated in figure 6. 

𝑃𝑁𝑖 = 𝑅𝐸𝑖 ∙ 𝐶𝑀 ∙ 𝑆𝑃𝑀    (2) 

For organizational measures, such as powering down 
during non-productive times, the priority number 𝑃𝑁𝑂 is 

calculated as shown in (3), using in this case the  
𝑁𝑃𝑇𝐹. The range variable 𝑅𝑉𝐾𝑃𝐼 given in (4) depicts the 

value of a specific KPI relative to the respective range 
𝐾𝑃𝐼𝑚𝑎𝑥 −𝐾𝑃𝐼𝑚𝑖𝑛 calculated from the dataset, which 

represents a benchmark from the observed machines. 

𝑃𝑁𝑂 = 𝑅𝑉𝐾𝑃𝐼 ∙ 𝐶𝑀 ∙ 𝑆𝑃𝑀    (3) 

𝑅𝑉𝐾𝑃𝐼 =
𝐾𝑃𝐼

𝐾𝑃𝐼𝑚𝑎𝑥−𝐾𝑃𝐼𝑚𝑖𝑛
    (4) 

 

Fig. 6: Flowchart of component-based measure selection 
and prioritization. 

Since it is difficult to generally quantify the monetary effects 
of component-based measures, we focus on the energy 
costs of the identified energy states. By multiplying the daily 

operation time and annual operation days with the relative 
state-dependent time share 𝑅𝑆𝑇𝑆, the annual operation time 

per energy state is determined. Combined with the average 
active power 𝑃𝑎𝑣𝑔,𝑖, ETA-ExSys automatically deduces the 

state-specific energy costs and calculates the energy 
saving potential of organizational measures such as 
powering down during non-productive energy states (e.g., 
operational, or standby). 

System Structure 

The following will present functions und processes within 
the expert system and interactions with the user interface. 
All data processing and analysis functions as well as the 
user interface are programmed in Python. The structure of 
ETA-ExSys as well as interactions between its constituents 
are illustrated in figure 7. 

 

Fig. 7: Structure and functions of ETA-ExSys. 

The front end is programmed as a web application, which 
is organized into four sections: data input, data overview, 
data analysis and recommended measures. As the name 
suggests, the data input section allows the user to upload 

measurement data and provide meta data about the 
machine tool as well as its operation for a comprehensive 
description of the system. Following the data upload, data 
processing takes a few minutes to be completed in the back 
end, making the three remaining sections accessible to the 
user. 

An overview of the processed data is provided via 
interactive plots and diagrams in the data overview 

section. By depicting findings and correlations within the 
data, the presented overview provides the user with 
important system insights and maintains transparency in 
the recommendation process. 

The section data analysis gives graphical representations 

of the identified energy states, resulting from the analysis of 
energy characteristics in the back end. The different energy 
state representations supply information about time and 
energy shares of each energy state as well as state-specific 
energy consumption of different machine components. This 
information further aids the user in understanding system 
recommendations and gaining enough knowledge for their 
own plausibility check. 

The final section, recommended measures, assembles 

the ranked organizational and component-based measures 
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as well as the estimated energy saving potential by 
adjusting the energy states. 

As previously mentioned, the recommended measures are 
selected from a measure catalogue and ranked according 
to their priority numbers, which are calculated using results 
from the back-end statistical analysis of the measurement. 
This process takes place in the back end block measure 
identification. The calculated values of the energy KPIs 

shown in table 2 can be downloaded by the user for further 
analysis. 

4.2 Discussion 

To validate the expert system, we implement it to an 
industrial use-case with one machine tool and compare the 
automatically recommended measures with manually 
selected ones. The comparison shows that measures 
selected and ranked by ETA-ExSys appear to be more 
specific and differentiated as opposed to the more 
generalized manually selected measures. The expert 
system’s performance is further underlined by the short 
computation time and high degree of automation in contrast 
to the lengthy process of manually selecting efficiency 
measures. This makes the approach suitable for use on 
numerous other machine tools in existing production sites. 

Additionally, the measure ranking feature of the expert 
system further assists in prioritizing efficiency measures, 
which is usually lacking in manual selection. Nevertheless, 
the priority numbers 𝑃𝑁, which are used for measure 

ranking, strongly depend on energy saving factors 𝑆𝑃𝑀 and 

cost factors 𝐶𝑀, which are experience-based. Due to 

discrepancies in 𝑆𝑃𝑀 and 𝐶𝑀 over different use-cases, the 

suggested factors can and should be adjusted by the user 
if necessary. 

On the other hand, the energy saving potential of state-
related organizational measures, gives the user 
quantitative information about the monetary effects of 
adjusting energy state time shares for a concrete decision 
basis. 

The developed system considers electrical power as the 
sole input energy, which shapes the identification of the 
system’s energy characteristics. This case is realistic for 
some industrial settings, however, several practical use-
cases with additional energy forms such as compressed air 
or chilled water are therefore not compatible with the expert 
system’s framework. 

Finally, the more diverse training data is available, the 
higher the chances are to train models with a higher 
accuracy and better generalization performance. In our 
case, supervised learning algorithms perform better for the 
identification of energy states than unsupervised ones. 
However, the datasets used for supervised learning are 
manually labeled and therefore do not necessarily 
represent an absolute truth. Furthermore, multivariate 
datasets allowed higher accuracies compared with 
univariate datasets for the identification of energy states. 
Consequently, adding more correctly labeled data from 
machine tools with different energy forms and topologies to 
the training set should significantly increase the system’s 
accuracy and widen its range of application. 

5 SUMMARY AND CONCLUSION 

In accordance with CRISP-DM, a software-based expert 
system was developed. For this purpose, different 
supervised and unsupervised machine learning algorithms 
were compared regarding their suitability for the 
identification of energy states and control strategies of 
machine tools in operation. In terms of performance, 

supervised learning algorithms achieved the best results for 
the identification of energy characteristics. For the 
identification of energy states, the Random Forest 
Classifier showed the highest average accuracy with 
83.78 %, while the Support Vector Classifier achieved the 

highest average accuracy of 95.65 % for the identification 
of control strategies. In addition to the identified energy 
characteristics, further statistical data are used to determine 
energy KPIs. Energy efficiency measures are selected 
based on the calculated energy KPIs and the detected 
control strategy. The measures are then prioritized 
depending on their expected energy savings, associated 
costs, and respective energy KPI values. Assessment 
indicates that ETA-ExSys succeeds in automatically 
identifying suitable energy efficiency measures in a 
significantly shorter time compared to manual analysis and 
measure selection. 

It is expected that an increase in the amount of data will 
further contribute to the accuracy and generalization 
performance of the models. With the inclusion of other 
forms of energy besides electrical energy, ETA-ExSys can 
be applied to a wider range of use-cases in the future. 
Moreover, a broader data basis of implemented energy 
efficiency measures can improve measure prioritization by 
providing more realistic cost and energy saving factors for 
calculating the priority number. For future research, 
investigating models that do not require the intermediate 
step of calculating energy KPIs, might be promising. This 
could possibly describe the direct relation between 
measurement data and proposed energy efficiency 
measures and reduce the influence of human error in the 
choice of KPIs. Furthermore, transferring this approach to 
other machine types, such as cleaning machines, could 
also potentially uncover future research topics. 
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