PERFORMANCE OF DIFFERENT DIAMOND CUTTING TOOLS IN FACE MILLING OF CEMENTED CARBIDE

Abstract

More and more forming and punching tools as well as wear parts are made from cemented carbide. The large variety and the geometry of these components are often reasons for finish machining by milling, but the tool wear is very high. For the investigations, end mills with different diamond material tips or coatings are used. The cemented carbide specimens exhibit an average tungsten carbide particle size of 2.5 μm and the binder material is cobalt with a proportion of 20 %. The cutting parameters are kept constant. For all tools a surface roughness depth Rz smaller than 1 μm is achieved. The detailed analysis of the tool wear behaviour and the surfaces allows for an appropriate selection of the cutting material and contributes to an increase of the performance of machining cemented carbides by milling.

Recommended articles

THE IMPACT OF KEY TEMPERATURE MEASURING POINTS ON THERMAL ERROR COMPENSATION MODEL TRANSFER BETWEEN MILLING CENTERS OF THE SAME PRODUCT LINE

M. Straka, M. Mares, O. Horejs
Keywords: thermal error | Compensation | Machine tool | Key temperature points | Transferability

MULTI-PHASE SIMULATION OF THE LIQUID COOLANT FLOW AROUND ROTATING CUTTING TOOL

L. Topinka, M. Braeunig, J. Regel, M. Putz, M. Dix
Keywords: CFD-Simulation | Multi-phase simulation | Thermal investigation | Machine tools | Tool cooling simulation

THE EFFECT OF USING RECYCLED CONCRETE ON THE MECHANICAL AND TECHNOLOGICAL PROPERTIES OF CONCRETE IN THE PRODUCTION OF PRECAST

PETR JUNGA, JAROSLAVA HEJDOVA, JURAJ RUZBARSKY
Keywords: Aggregate | concrete | recycled aggregate concrete | precast concrete | compressive strength | modulus of elasticity

MACHINE DATA-BASED PREDICTION OF BLISK BLADE GEOMETRY CHARACTERISTICS

A. Ernst, M. Weigold
Keywords: quality | Machine Learning | milling | Aviation Industry