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Abstract 
 

In the course of the digitization of modern production systems, a reliable parameterization of the digital 
twin of machining processes is essential. For example, the digital representation of milling operations 
enables the process parameter selection without time-consuming and expensive test series by using 
stability lobe diagrams (SLD). However, the parameterization of the underlying process force model with 
very few cutting force experiments can prevent a reliable process design, as errors in the parameterization 
process are propagated to the stability analysis. 
Therefore, a novel two-step methodology is proposed to provide probabilistic credible intervals for 
conventional stability lobe diagrams: First, the unknown parameters of the process force model are 
estimated using a Bayesian regression method. Secondly, the estimated probability distributions of the 
process force parameters are used to quantify the uncertainty of the stability boundary using a 
mechanistic process force model. 
The proposed methodology is particularly characterized by its low computational cost, since time-
consuming and computationally expensive Monte Carlo procedures are avoided. Instead, the 
methodology relies on the analytical derivation of the model parameters’ posterior probability distribution 
and on polynomial chaos expansion (PCE) algorithms to quantify the uncertainty in the final stability 
analysis. 
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1 INTRODUCTION 

The efficiency of modern production processes, such as 
milling, is heavily dependent on a robust process stability. 
These production processes can be changed, adapted and 
reconfigured due to modern cyber-physical systems 
[Schmucker et al. 2021]. Therefore, the simulation-based, 
predictive analysis of the process stability without time-
consuming test series is increasingly important and 
essential. 

The underlying force models are mostly based on a few 
parameters, whose identification by experimental force 
measurements is often subject to errors.  Hence, it is crucial 
to quantify the parameter uncertainties which may arise due 
to an uncertain parameter estimation procedure. 
Subsequently, the following model-based stability 
estimation is also prone to uncertainty. 

Recent works on probabilistic programming to estimate 
cutting force model parameters and on uncertainty 
quantification of stability limits show that such an 
uncertainty quantification methodology is reasonable, but 

due to its algorithmic structure computationally expensive 
and cumbersome.  

In order to provide a stability analysis, which is reliable and 
fast at the same time and thus can be used on a regular 
basis for modern reconfigurable production systems, a 
novel methodology to quantify the arising uncertainty in a 
stability analysis is proposed. The methodology relies on 
the analytic computation of the probabilistic regression to 
identify uncertain cutting force coefficients, whereas the 
following uncertainty quantification of the stability limit is 
based on polynomial chaos expansions to reduce the 
computational burden of the uncertainty propagation 
scheme. Figure 1 illustrates the proposed methodology. 
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Figure 1: Methodology to quantify the uncertainty of 
stability analyses based on a probabilistic parameter 
estimation of the cutting force coefficients. 

 

This paper is structured as follows: 

First, recent works on probabilistic cutting force parameter 
estimation and a subsequent uncertainty quantification of 
the stability limit are presented in section 2. Thereafter, a 
novel probabilistic approach to estimate the cutting force 
parameters is presented in section 3. In section 4, the 
uncertainty in the cutting force parameters is propagated to 
the stability analysis using non-sampling based algorithms. 
The implementation details are presented in section 5, 
whereas the results are discussed in section 6. Section 7 
summarizes and concludes this paper. 

 

2 FUNDAMENTALS AND RECENT WORK 

Usually, the stability analysis of conventional milling 
processes is based on the approach of Altintas and Budak 
[Altintas 2001; Altintas et al. 1995], resulting in the well-
known stability lobe diagrams. The stability limit, which is 
characterized by the chatter free axial depth of cut 𝑏𝑙𝑖𝑚, can 

be calculated as follows: 

𝒃𝒍𝒊𝒎 =  −
𝟐 𝝅 𝚲𝑹

𝑵𝒕 𝑲𝒕
(𝟏 + 𝜿𝟐). 

𝑁𝑡 is the number of teeth and 𝐾𝑡 is a cutting factor. 𝜅 is 

defined as  

𝜅 =
Λ𝐼

Λ𝑅
. 

Λ𝑅 and Λ𝐼 are the real and imaginary parts of the eigenvalue 

Λ, which is calculated by solving the characteristic 

eigenvalue problem  

det ( 𝐼 +  Λ 𝐺0(𝑖𝜔𝑐)) = 0. 

𝐺0(𝑖𝜔𝑐) is defined as the oriented transfer function matrix 

as described in detail in [Altintas et al. 1995]. Besides a 
given chatter frequency 𝜔𝑐   and the radial immersion angles 
𝜙𝑠 and 𝜙𝑒, the oriented transfer function matrix is 

dependent on the cutting factors 𝐾𝑡 and 𝐾𝑟.  

Finally, these cutting factors can be determined using 
experimental cutting force measurements and linear 
regression techniques. 

Exemplarily for full immersion cuts (slotting), the average 
cutting forces in feed and normal direction are modelled as 
follows [Schmitz et al. 2019]: 

�̅�𝐹𝑒𝑒𝑑 =
𝑁t𝑏𝑘n

4
𝑓t +

𝑁t𝑏𝑘ne

𝜋
, 

and 

�̅�𝑁𝑜𝑟𝑚𝑎𝑙 =
𝑁t𝑏𝑘t

4
𝑓t +

𝑁t𝑏𝑘te

𝜋
, 

where 𝑏 is the axial depth of cut and 𝑓𝑡 is the feed per tooth. 

Using multiple cutting force experiments with various feeds 
per tooth, the four cutting force coefficients 𝑘𝑡, 𝑘𝑛, 𝑘𝑡𝑒 and 

𝑘𝑛𝑒 can be determined based on linear regression between 

the feed per tooth 𝑓𝑡 and the average cutting forces �̅�𝐹𝑒𝑒𝑑 

and �̅�𝑁𝑜𝑟𝑚𝑎𝑙. Figure 2 illustrates this approach. 

 

Figure 2: Principle scheme of the identification of 𝒌𝒏 

and 𝒌𝒏𝒆 using a linear regression of experimental data 
(based on [Schmitz et al. 2019]). 

 

Typically, the linear regression is estimated using ordinary 
least squares (OLS) methods, which minimize the total sum 
of squared residuals between the fitted line and the 
measured data points [Schmitz et al. 2019].   

By using the OLS methods, the overdetermined linear 
regression models  

�̅�𝑭𝒆𝒆𝒅 = 𝑿𝑭𝒆𝒆𝒅 ∙ 𝜷𝑭𝒆𝒆𝒅 + 𝜖𝐹𝑒𝑒𝑑 

and 

�̅�𝑵𝒐𝒓𝒎𝒂𝒍 = 𝑿𝑵𝒐𝒓𝒎𝒂𝒍 ∙ 𝜷𝑵𝒐𝒓𝒎𝒂𝒍 +  𝜖𝑁𝑜𝑟𝑚𝑎𝑙 

can be solved. 𝑿𝑭𝒆𝒆𝒅 and 𝑿𝑵𝒐𝒓𝒎𝒂𝒍 represent the 

observations (also called design matrix), whereas 𝜷𝑭𝒆𝒆𝒅 

and 𝜷𝑵𝒐𝒓𝒎𝒂𝒍 represent the four cutting coefficients: 

𝜷𝑭𝒆𝒆𝒅 = [𝑘𝑛  𝑘𝑛𝑒]𝑇, 

𝜷𝑵𝒐𝒓𝒎𝒂𝒍 = [𝑘𝑡    𝑘𝑡𝑒]𝑇. 

The cutting factors 𝐾𝑡 and 𝐾𝑟 used in the stability analysis 

can be directly computed from the estimated cutting force 
coefficients [Schmitz et al. 2019]: 

𝐾𝑡 =  𝑘𝑡 , 

    𝐾𝑟 =
1

tan 𝛼
 , 

with 

𝛼 = tan−1 (
𝑘𝑛

𝑘𝑡
). 

If there are only few cutting experiments available, the 
estimated OLS solution may be prone to errors. 

In order to compensate for those errors and to deal with the 
resulting uncertainty, multiple probabilistic approaches 
have been proposed to estimate machining force 
parameters using Bayesian inference techniques 
[Bhattacharyya et al. 2021; Karandikar et al. 2014; Salehi 
et al. 2019]. Bayesian inference methods are increasingly 
popular to estimate probability distributions of model 
parameters. Therefore, the model parameters are not 
considered to be deterministic and constant point 
estimates, but rather represented by random variables with 
an underlying probability distribution. Using Bayes 
Theorem, this prior belief on the parameter distributions can 
be updated by considering a limited number of experimental 
observations. 

As the inference of the underlying probability distributions 
is often computationally not solvable, numerical Markov 
Chain Monte Carlo (MCMC) sampling techniques are used 
to infer the underlying distributions of the cutting force 
parameters [Karandikar et al. 2014]. However, as MCMC 
techniques make use of Monte Carlo sampling techniques, 
the inference of the probability distributions remains 
computationally intensive.  

As proclaimed by Schmitz and Smith [Schmitz et al. 2019], 
uncertainties in the cutting force coefficients result in 
uncertainties of the stability limits. Hence, similar to the 
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Bayesian regression estimates, the stability limit 𝑏𝑙𝑖𝑚 is not 

a deterministic result of a calculation, but also a random 
variable with an underlying probability distribution. Figure 3 
illustrates this assumption. 

Different approaches to estimate the underlying probability 
distributions of the stability limits have been proposed: 

Duncan et al. [Duncan et al. 2005] proposed a methodology 
to infer the stability limits’ uncertainty based on uncertain 
cutting force parameters and uncertain frequency response 
functions at the tool tip. Normal distributions were assumed 
for the cutting force parameters as well as for the frequency 
response functions. A conventional Monte Carlo simulation 
approach with 1000 samples was used to estimate the 
resulting uncertainty of the stability boundary. 

Similarly, Li et al. [Li et al. 2020] proposed an MCMC-based 
inference framework to estimate the stability lobe 
uncertainty based on uniformly distributed cutting force 
coefficients and normally distributed modal parameters. 

In contrast, Karandikar et al. [Karandikar et al. 2020] 
performed a Bayesian inference scheme directly for the 
stability lobe diagram. Thus, the identification of cutting 
force parameters is not required, but multiple stability 
measurements using different process parameters are 
needed to update the prior belief. The prior was modelled 
using a Monte Carlo simulation and normal distributions 
were assumed for the cutting force parameters, tool 
properties and stiffness and damping terms. 

 

It is apparent, that the current methods to estimate the 
cutting force parameters as well as the current methods to 
propagate the uncertainty into the stability analysis heavily 
rely on Monte Carlo approaches. Therefore, their 
application in reconfigurable systems and production 
processes is limited as conventional Monte Carlo schemes 
are computationally expensive and cumbersome. 

In order to solve this issue, a novel methodology for rapid 
uncertainty quantification of the stability analysis is 
proposed and described in the following sections 3 and 4. 

  

3 BAYESIAN PARAMETER ESTIMATION 

Similarly to the approach presented by Karandikar et al. 
[Karandikar et al. 2014], a probabilistic inference scheme to 
estimate uncertain cutting force parameters is chosen. 
Furthermore, a Bayesian regression technique is used to 

estimate the underlying probability distributions of the 
cutting force parameters. In comparison to Karandikar et 
al., who rely on computationally intensive MCMC 
algorithms, the Bayesian inference is chosen to rely on 
conjugate priors. In contrast to conventional MCMC 
approaches for Bayesian linear regression, conjugate 
priors provide an analytical solution for the posterior 
distributions. Therefore, conjugate normal priors with an 
inverse gamma error function are chosen. The choice of 
priors is well founded by the experiments and results 
presented in [Duncan et al. 2005; Karandikar et al. 2014]. 

Hence, the Bayesian linear regression problem is stated as 
follows, where 𝜷𝑭𝒆𝒆𝒅 and 𝜷𝑵𝒐𝒓𝒎𝒂𝒍 now represent the joint 

probability distributions of [𝑘𝑛   𝑘𝑛𝑒]𝑇 and [𝑘𝑡    𝑘𝑡𝑒]𝑇: 

�̅�𝑭𝒆𝒆𝒅 ~ 𝑵(𝑿𝑭𝒆𝒆𝒅 ∙ 𝜷𝑭𝒆𝒆𝒅, 𝜎𝐹𝑒𝑒𝑑
2 ⋅ 𝑰), 

�̅�𝑵𝒐𝒓𝒎𝒂𝒍 ~ 𝑵(𝑿𝑵𝒐𝒓𝒎𝒂𝒍 ∙ 𝜷𝑵𝒐𝒓𝒎𝒂𝒍, 𝜎𝑁𝑜𝑟𝑚𝑎𝑙
2 ⋅ 𝑰). 

Conjugate prior beliefs in form of Normal-Inverse-Gamma 
(NIG) priors are placed on the unknown cutting force 
coefficients in 𝜷𝑭𝒆𝒆𝒅 and 𝜷𝑵𝒐𝒓𝒎𝒂𝒍 (the directional indices 

𝐹𝑒𝑒𝑑 and 𝑁𝑜𝑟𝑚𝑎𝑙 are left out for better readability): 

Such a prior is dependent on the mean 𝝁𝜷, the variance 𝑽𝜷, 

the shape parameters 𝑎 and 𝑏, the Gamma function Γ(𝑎) 

and the rank 𝑛 of the design matrix 𝑿. 

It can be shown, that by using the given prior with the given 
Gaussian likelihood function, the resulting posterior 

distributions 𝑝(𝜷, 𝜎2| �̅�) of the cutting force parameters are 
also in NIG form (the posterior quantities are denoted 
with ∗): 

𝑝(𝜷, 𝜎2| �̅�) =  𝑁𝐼𝐺(𝝁𝜷
∗ , 𝑽𝜷

∗ , 𝑎∗, 𝑏∗). 

Specifically, their posterior quantities can be analytically 
computed based on the prior assumptions by 

 

𝝁𝜷
∗ = (𝑽𝜷

−1 + 𝑿𝑇𝑿)
−1

(𝑽𝜷
−1𝝁𝜷 + 𝑿𝑇�̅�),

𝑽𝜷
∗ = (𝑽𝜷

−1 + 𝑿𝑇𝑿)
−1

,

𝑎∗ = 𝑎 +
𝑁

2
,

𝑏∗ = 𝑏 +
1

2
[𝝁𝜷

𝑇𝑽𝜷
−1𝝁𝜷 + �̅�𝑇�̅� − 𝝁∗𝑇𝑽∗−1𝝁∗].

 

 

𝑁 denotes the number of observations.  

Due to the analytic solution, the Bayesian linear regression 
approach can be solved significantly faster than 
conventional MCMC approaches. 

The approach was validated using three cutting force 
experiments conducted on a GROB G350 machine with a 
16 mm end mill tool with a helix angle of 30°, three flutes 

and full immersion cuts in C45U steel. The cutting forces in 
feed and normal direction were measured using a Kistler 
dynamometer.  

Figure 4 illustrates the resulting Bayesian linear regression 
based on the conjugate prior assumption. The estimated 
means 𝜇𝐹𝑒𝑒𝑑 and 𝜇𝑁𝑜𝑟𝑚𝑎𝑙  and their 95% credible intervals 

are depicted as well. 

 

𝑝(𝜷, 𝜎𝟐) =
𝑏𝑎

(2𝜋)
𝑛
2  |𝑽𝜷|

1
2 Γ(𝑎)

(
1

𝜎2
)

𝑎+
𝑛
2

+1

⋅ exp [−
1

𝜎2
⋅ {𝑏 +

1

2
(𝜷 − 𝝁𝜷)

𝑇
𝑽𝜷

−1(𝜷 − 𝝁𝛽)}] = 𝑁𝐼𝐺(𝝁𝜷, 𝑽𝜷, 𝑎, 𝑏). 

Figure 3: Principle scheme of uncertainty-based 
stability lobe diagrams (based on [Schmitz and 
Smith 2019]). 
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Figure 4: Bayesian linear regression using conjugate 
priors and three cutting force measurements. 

 

The mean and the 95% credible intervals of the estimated, 
conditional cutting force parameters are provided in Table 
1. The covariance matrices of the conditional joint 
probability distributions of 𝜷𝑭𝒆𝒆𝒅 and 𝜷𝑵𝒐𝒓𝒎𝒂𝒍 are as follows: 

 

𝑽𝜷𝑭𝒆𝒆𝒅

∗ =  [
11049.39 −720.29
−720.29 48.82

], 

𝑽𝜷𝑵𝒐𝒓𝒎𝒂𝒍

∗ =  [
19487.97 −1270.38
−1270.38 86.10

]. 

 

Table 1: Conditional means and 95% credible intervals 
of the estimated cutting force coefficient distributions 

 Mean 95% credible interval (CI) 

𝑘𝑡 2057.29 
𝑁

𝑚𝑚2 [1783.68, 2330.90]
𝑁

𝑚𝑚2 

𝑘𝑡𝑒 30.28 
𝑁

𝑚𝑚
 [12.10, 48.47]

𝑁

𝑚𝑚
 

𝑘𝑛 991.53 
𝑁

𝑚𝑚2 [785.50, 1197.55]
𝑁

𝑚𝑚2 

𝑘𝑛𝑒 27.08 
𝑁

𝑚𝑚
 [13.39, 40.78]

𝑁

𝑚𝑚
 

 

 

4 UNCERTAINTY PROPAGATION TO THE 
STABILITY ANALYSIS 

The estimated probability distributions of the cutting force 
coefficients can be used to quantify the resulting uncertainty 
in the stability analysis. 

Within this publication, the stability analysis is based on the 
Zero Order Approximation (ZOA) approach by Altintas and 
Budak [Altintas et al. 1995] (see section 2). 

This forward uncertainty quantification process is usually 
conducted using simple Monte Carlo simulations, as 
described in section 2. Since Monte Carlo simulations 
represent a large number of random computer experiments 

(making use of the Law of Large Numbers [Sullivan 2015]) 
and as defined by the central limit theorem, a Monte Carlo 

simulation converges with 
1

√𝑛𝑀𝐶
, with 𝑛𝑀𝐶 being the number 

of random Monte Carlo samples. Consequently, a very 
large number of Monte Carlo runs is needed to provide a 
reliable estimation of the stability limits’ mean and 
distribution properties. 

There are different approaches to reduce the computation 
effort without reducing the precision of the uncertainty 
estimates, namely quasi Monte Carlo (QMC) approaches 
and polynomial chaos expansion (PCE) methods. In this 
work, both approaches (QMC and PCE) are used to 
estimate the resulting stability limit and its uncertainty 
based on the estimated probability distributions of the 
cutting force coefficients. Additionally, their computational 
efficiency is evaluated and compared. 

Quasi Monte Carlo (QMC) approaches increase the sample 
coverage over the input domain. Thus, fewer samples are 
needed compared to regular Monte Carlo methods [Tennøe 
et al. 2018]. Following the methodology of QMC 
approaches, a predefined number of evenly random 
parameter samples of 𝑘𝑡 and 𝑘𝑛 are drawn and evaluated 

in the subsequent stability analysis. Nonetheless, there are 
still many evaluations of the stability model needed. 

In contrast to regular or quasi Monte Carlo approaches, 
polynomial chaos expansion (PCE) methods approximate 
the underlying model by polynomial functions [Tennøe et al. 
2018]. Following the methodology of Tennøe et al. for the 
uncertainty propagation, the uncertainty arising in the 
stability model 𝑏𝑙𝑖𝑚(𝛄, 𝑘𝑡 , 𝑘𝑛) based on deterministic inputs 

𝛄 and the uncertain cutting force coefficients 𝑘𝑡 and 𝑘𝑛, the 

model is approximated by a polynomial expansion �̂�𝑙𝑖𝑚 

[Tennøe et al. 2018]:  

 𝑏𝑙𝑖𝑚 ≈  �̂�𝑙𝑖𝑚(𝛄, 𝑘𝑡 , 𝑘𝑛) =  ∑ 𝑐𝑛(𝛄) ⋅ 𝜙(𝑘𝑡 , 𝑘𝑛).

𝑁𝑝−1

𝑛=0

 

The number of expansion factors 𝑁𝑝 can be calculated as 

𝑁𝑝 =  (
𝑑 + 𝑝

𝑝
), 

where 𝑑 is the number of uncertain parameters (in this case 

𝑑 =  2) and 𝑝 equals the polynomial order [Tennøe et al. 

2018]. The type of the polynomials 𝜙(𝑘𝑡 , 𝑘𝑛) is chosen 

based on the type of the uncertain parameters, whereas the 
expansion coefficients 𝑐𝑛(𝛄) are estimated using numerical 

regression algorithms. Detailed descriptions on the theory 
and numerical implementations of PCE methods are 
presented in [Feinberg et al. 2015; Tennøe et al. 2018; 
Yang et al. 2017]. 

 

The calculated stability limit was validated using multiple 
cutting experiments, each with half immersion but with 
different process parameters, namely with different spindle 
speeds and different axial depths of cut.  The process 
stability was evaluated using the autocorrelation coefficient 
𝑅𝑦𝑦 as proposed by Zaeh et al. [Zaeh et al. 2020]. The 

autocorrelation coefficient 𝑅𝑦𝑦 evaluates the self-similarity 

of the workpiece acceleration 𝑎𝑦(𝑡) close to the machining 

process. Based on empirical studies, it was determined, 
that an autocorrelation coefficient 𝑅𝑦𝑦  <  0.7 characterizes 

an unstable process, even though this coefficient can also 
be used as a continuous chatter metric. 

The test setup is illustrated in Figure 5. 
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Figure 5: Experimental setup. 

 

The stability analysis is not only dependent on the cutting 
force coefficients 𝑘𝑡 and 𝑘𝑛, but also on the relative 

workpiece-cutter dynamics. The frequency response 
function (FRF) in normal direction was averaged using five 
impact hammer tests, whereas the FRF in feed direction 
was neglected due to a significantly lower compliance in 
feed direction. The averaged FRF in normal direction is 
shown in Figure 6.  

 

 

Figure 6: Averaged frequency response function 
between 50 Hz and 600 Hz, as the relevant dynamics 
are present within this range. 

As the FRF was averaged from five measurements, it is 
assumed to be deterministic without any uncertainty. 
Hence, the FRF was included in the deterministic model 
inputs 𝛄. It is worth mentioning, that this assumption 

neglects uncertainties which might occur due to 
temperature-dependant phenomena or nonlinear friction 
effects. Possible future developments to overcome this 
issue are presented in section 6. 

 

The computed stability lobes using PCE (𝜇𝑃𝐶𝐸) and QMC 

(𝜇𝑄𝑀𝐶) are shown in Figure 7. Additionally, the prediction 

uncertainty is illustrated in form of the estimated 95% 
credible interval (CI) for both approaches (95 % 𝐶𝐼𝑃𝐶𝐸 and 

95 % 𝐶𝐼𝑄𝑀𝐶). 

 

 

Figure 7: Stability lobe diagram including the 
uncertainty estimates using PCE and QMC. 

It is clearly visible, that the uncertainty estimation based on 
PCE yields the same results as the computation using 
QMC. 

Furthermore, the resulting autocorrelation coefficient for 49 
cutting experiments is presented in Figure 7. The results 
indicate, that the overall process stability is captured using 
the estimated mean (and thus the conventional 
deterministic approach). However, the estimated 
uncertainty enables a more robust and more reliable 
process design, as the lower credible bound always 
ensures a stable process. 

5 IMPLEMENTATION DETAILS 

All computations were performed on a conventional 
computer (Intel Core™ i7 CPU with 1.80 GHz). The 
program code was written in the programming language 
Python 3.  

As the posteriors of the Bayesian cutting force parameter 
identification were computed analytically instead of using 
MCMC methods, the computation was performed in less 
than 15 𝑚𝑠. 

The implementation of the uncertainty propagation method 
is primarily based on the uncertainty quantification 
frameworks Chaospy [Feinberg et al. 2015] and 
Uncertainpy [Tennøe et al. 2018]. 

A particular advantage of the PCE-based uncertainty 
propagation is the significantly faster computation time as 
visualized in Figure 8. The PCE computation is by a factor 
of almost 265 faster than the QMC approach.  

 

 

Figure 8: Comparison of computation times for the 
uncertainty propagation. 

 

The configuration parameters of both evaluated 
approaches are listed in Table 2. 

 

Table 2: Computation settings of PCE and QMC 

 Parameter Value 

P
C

E
 Method COLLOCATION 

Polynomial order 4 

Q
M

C
 Number of samples 104 

Sampling method SALTELLI 

 
 

6 DISCUSSION 

It is apparent, that the presented methodology, consisting 
of an analytical estimation of the cutting force coefficient’s 
probability distributions and a PCE-based uncertainty 
propagation for the stability analysis, is able to reduce the 
computation times significantly in comparison to published 
approaches. Additionally, the presented methodology 
indicates, that the resulting probability distributions of the 
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stability limits are not normally distributed as assumed in 
related works, but are rather log-normally distributed. 
Figure 9 illustrates the resulting probability distribution of 

the stability limit at 2300 
𝑟𝑒𝑣

𝑚𝑖𝑛
. Hence, it is worth noting, that 

as the probability distribution is clearly not symmetric, the 
estimated mean does not represent the maximum of the 
probability density. 

 

 

Figure 9: The probability distribution of the stability 
limit at 2300 rev/min. 

Furthermore, the current work only considers the cutting 
force coefficients as random variables. This assumption is 
valid, as the dynamics are considered by measured 
frequency response functions at the location of the 
machining process. Nonetheless, measured frequency 
responses functions may be prone to errors and 
uncertainties as well. Hence, the uncertainties arising from 
uncertain structural dynamics should be accounted for in 
the future. The authors intend to pursue this approach by 
applying Bayesian inference techniques to model the 
uncertainty in the structural dynamics model as as well, e.g. 
as presented in [Busch et al. 2020]. 

 

7 SUMMARY 

In this publication, a two-step-methodology has been 
presented to quantify the uncertainty in the model-based 
stability analysis of milling processes: the uncertainty, 
which arises during the cutting force coefficient 
identification due to a limited number of cutting force 
experiments, was quantified using the analytic solution of a 
conjugate Bayesian regression model. Secondly, the 
coefficients' uncertainty was propagated to the stability 
analysis using a polynomial chaos expansion approach, 
which proves to be significantly faster than conventional 
(quasi) Monte Carlo simulations. 
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