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Abstract 

During thin-walled part milling, a dominant flexible direction perpendicular to the feed motion is most likely 
to exist, which allows to formulate the stability problem in the frequency domain in a very simple form. By 
these means, the existence of optimal engagements under up-milling strategy for achieving a theoretical 
infinite Hopf stability have already been demonstrated. However, period-doubling chatter can also pose 
a limit to the productivity in thin wall milling, but the knowledge on optimal engagements that can cancel 
this kind of chatter is inexistent.  
This paper discusses the effect of the radial engagement and number of flutes on flip stability in a 
dimensionless way and independent on the system dynamics. Up- and down- milling strategies are 
compared: a larger period-doubling prevalence is identified in the former, although in terms of absolute 
critical depth of cut, up-milling outperforms down-milling for most of the practical cases. It is also 
demonstrated that even though it is possible to find optimal engagements that minimise the flip likelihood, 
it is impossible to totally cancel the period-doubling chatter by simply tuning the radial engagement, which 
leaves the cutter helix tuning as the only way to completely eliminate flip chatter. Finally, the obtained 
results are validated through semidiscretisation simulations. 
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1 INTRODUCTION 

Regenerative chatter is, together with static deflections, one 
of the main factors limiting the productivity when milling 
thin-walled parts. Their very low stiffness and internal 
damping properties result in a large dynamic flexibility at 
points to be machined. This highly promotes the occurrence 
of large amplitude chatter vibrations that can lead to deep 
surface marks, rapid tool wear and accelerated machine 
tool component damage.  

Regenerative chatter is a type of self-excited vibration 
caused by the regenerative effect [Tobias 1958, Tlusty 
1963], whereby each cutting edge cuts the wavy pattern left 
in the previous pass. Mathematically, this can be described 
as an autonomous delay differential equation (DDE), which 
under certain machining parameters can lead to Hopf-kind 
of instabilities, causing the well-known machining chatter. 
In the case of milling, the governing equation becomes a 
time-periodic DDE due to the parametric excitation induced 
by the time-periodicity of the so-called directional factor 
matrix. The time-periodic DDEs not only exhibit Hopf 
bifurcations, but also period-doubling –flip– instabilities 
[Davies 2000]. In other heavy-duty milling processes the 
parametric excitation is negligible and seldom limits the 

stability of the process. However, in thin wall milling the 
period-doubling chatter can pose a real problem when 
searching for chatter-free machining conditions. The low 
radial immersion and the small number of teeth used can 
much promote a highly interrupted cutting and, thus, a 
significant parametric excitation.  

Among the different techniques with which chatter can be 
avoided [Munoa 2016], process planning-based methods 
backed by stability models constitute a very industrially 
attractive alternative. These models are usually based on 
complex time-discrete algorithms such as 
semidiscretisation [Insperger 2011] or full discretisation 
[Ding 2010] methods due to the multi-dimensional nature of 
the limiting modes and in order to handle the highly 
interrupted cutting. However, like with any other numerical 
method, the insight of the effect of machining parameters 
on milling stability is lost, turning the process planning task 
into a long trial and error process.  

The stability of the time-periodic DDEs arising in milling can 
be alternatively studied by means of the so-called 
frequency domain methods. Frequency domain methods 
parametrically provide the root-crossing curves by 
successively solving an eigenvalue problem. If only the 
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zeroth harmonic of the directional factor is considered, a 
rapid calculation of the Hopf critical limits is possible, which 
is commonly known as the zeroth order algorithm (ZOA, 
[Altintas 1995]). ZOA solution can be extended by 
considering higher harmonics of the directional factor matrix 
[Minis 1993], leading to the multifrequency method (MF, 
[Budak 1998]), able to capture both Hopf and flip 
instabilities [Merdol 2004, Munoa 2013]. In any case, these 
general frequency domain algorithms are still far from 
providing the key relations between the milling parameters 
and the system stability.  

In thin-walled part milling, a dominant modal direction 
perpendicular to the feed motion is most likely to exist, so 
the directional factor can be condensed onto a single 
coefficient. Hence, the stability problem can be 
reformulated in the frequency domain in a simpler form 
[Zatarain 2010], where the implications of the mean 
directional factor and its harmonics on Hopf and flip stability 
limits can be devised [Iglesias 2016]. By this means, it has 
already been demonstrated not only that up-milling always 
outperforms down-milling in terms of Hopf stability, but also 
that it is possible to find an engagement at which a 
theoretical infinite Hopf stability can be achieved [Sanz-
Calle, 2021]. When it comes to the optimisation of the 
period-doubling stability, it is well-known that it is possible 
to totally cancel the flip chatter by properly tuning the cutter 
helix pitch and the axial depth of cut [Zatarain 2006, 2010], 
whereas the influence of radial engagement and number of 
flutes on period-doubling stability still remains unknown.  

Therefore, this paper studies the influence of the radial 
engagement and number of flutes on the shape, prevalence 
and critical value of the period-doubling stability limit, 
independently of the dynamics of the part or other process 
parameters. To this end, the thin wall milling stability 
problem is formulated in Section 2. In Section 3, up- and 
down-milling strategies are compared, and the optimisation 
of the flip stability with the radial engagement is discussed. 
Finally, in Section 4 the findings are demonstrated through 
semidiscretisation calculations. 

2 STABILITY OF INTERRUPTED MILLING OF 
THIN-WALLED PARTS 

Most parts with thin-walled features are generally machined 
by successive milling passes perpendicular to their 
‘thickness direction’ (y) along which they mainly exhibit their 

flexibility. Consequently, the milling dynamics can be well 
described by means of a unidirectional milling model as 
shown in Fig. 1. 

2.1 Regenerative unidirectional milling model 

Consider a single y-mode with natural frequency ωn, 
damping ratio ζ and modal stiffness k and a cylindrical cutter 
with Z regularly spaced teeth rotating at a constant spindle 
speed Ω. Under these considerations, the DDE governing 

the milling dynamics can be expressed as 

 

(1) 

where a and Ktc stand for the axial depth of cut and 

tangential cutting coefficient, respectively. The regenerative 

 

Fig. 1 y-directional regenerative milling force model for thin-

walled parts. Graphical obtention of the directional factor 
b(φ). 

delay is represented by τ and is equal to the tooth passing 

period 𝑇𝑇 = 2π (Ω𝑇)⁄  in this case. 𝑇(𝑇) = 𝑇(𝑇 + 𝑇𝑇) is 

the time-periodic directional factor, condensing the 
projection of the cutting force onto the vibration direction (y) 

and, this, in turn, projected onto the chip thickness direction 
(r).  

2.2 Formulation of the stability problem in the 
frequency domain 

The DDE in (1) is time-periodic due to the aforementioned 
time-periodicity of the directional factor, exhibiting both 
Hopf and period-doubling instabilities. Instead of using 
purely numerical time-discrete methods that could ‘hide’ the 
key relations between the machining parameters and 
stability properties, the stability of (1) can be studied in the 
frequency domain. To this effect, the critically stable case 
where the system vibrates at a dominant frequency ωc and 
its infinite k modulations at the tooth passing frequency 

𝑇𝑇 = 2π / TZ is considered, that is, 

 

(2) 

In addition, the time-periodic directional factor B(t) can be 

expressed as a Fourier series as  

 
(3) 

Each k harmonic of both system displacement and force 

can be related in the frequency domain as 𝑇𝑇 = 𝑇𝑇𝑇𝑇, 

where 𝑇𝑇 = 𝑇(𝑇c + 𝑇 𝑇𝑇) is the receptance function 
evaluated at the k modulated frequency and where multiple 
y-directional modes can be considered. Therefore, the 
characteristic equation of the k harmonic results in 

 
(4) 

Hence, if all the h harmonics are considered, the milling 

process stability analysis drives to the following infinite 
dimensional eigenvalue problem: 



 

MM Science Journal | www.mmscience.eu 
ISSN 1803-1269 (Print) | ISSN 1805-0476 (Online) 

Special Issue | HSM 2021 
16th International Conference on High Speed Machining 

October 26-27, 2021, Darmstadt, Germany 

DOI: 10.17973/MMSJ.2021_11_2021167 

 

 

MM Science Journal | 2021 | NOVEMBER - Special Issue on HSM2021 

5128 

 

(5) 

where 

 
(6) 

is the eigenvalue. 

2.3 Period-doubling stability 

Period-doubling instability takes place when the main 
harmonic (0th) and one of its kth modulations excite the same 

mode but at opposite sides of the ordinate axis, exhibiting 
a flip chatter frequency at 𝑇c = 𝑇 ω𝑇/2.  Because 

(e−i𝑇c𝑇 − 1) = 0 when an even harmonic is considered, only 

odd harmonics (-1, -3, -5, …) can generate the subsequent 

flip lobes. Nevertheless, the magnitude of the harmonics 
decrease as higher modulations are considered. Hence, flip 
lobes of order higher than 1 (main flip lobe) seldom limit the 

stability. Accordingly, the main flip lobe can be described by 
just considering the 0th and the -1st harmonics in (5) 

[Zatarain 2010, Munoa 2013, Iglesias 2016], leading to the 
following 2 x 2 eigenvalue problem: 

 
(7) 

where β0 is the mean directional factor and 𝑇−1 = 𝑇1
∗  is the 

1st harmonic of the directional factor. At the main flip lobe 

the flip chatter frequency is 𝑇c = ω𝑇/2, and thus e−i𝑇c𝑇 −
1 = −2, resulting in 

 
(8) 

Due to the symmetry of the receptance function 𝑇−1 =
𝑇0 e−i2𝑇, being ψ the phase of the receptance. Thus, the 

determinant can be reformulated as 

 
(9) 

Solving the determinant, the following closed-form 
expression of the flip chatter lobe can be devised 

 

(10) 

where 𝑇𝑇 = |𝑇1|  |𝑇0|⁄  is the ratio between the 1st and the 
0th harmonics of the directional factor.  

If the minimum —critical— point of the flip lobe is of interest, 
(10) can be expressed as a function of the dimensionless 
flip chatter frequency λ = ωc/ωn = 𝑇𝑇/(2𝑇n) as 

 

(11) 

Then, for obtaining the minimum, (11) is derived with 
respect the dimensionless chatter frequency as follows: 

 
(12) 

from which the dimensionless chatter frequency associated 
to the critical point is attained as: 

 

(13) 

Finally, by introducing the frequency of the minimum in (11), 
the critical depth of cut amin of the period-doubling lobe 

 
(14) 

is achieved.  

3 ANALYSIS OF THE FLIP STABILITY THROUGH 
THE DIRECTIONAL FACTOR HARMONICS 

3.1 Calculation of the directional factor in thin wall 
milling 

The 0th and 1st harmonics of the directional factor, β0 and β1, 
and the ratio between them rβ have a direct influence in both 

shape and magnitude of the period-doubling stability limit. 
In thin wall milling, as the vibration direction is always the y 

direction, the directional factor is predefined and 
independent of the system dynamics or other process 
parameters. Its value can be obtained by summing the 
contributions b(φ) of the Z cutting edge pondered through 
the screen function g(φ) which equals 1 if the tooth is inside 
the engagement limits [φen, φex] and 0 if it is outside: 

 
(15) 

where φi(t) stands for the angular position of the tooth i at 
the instant t. The contribution of each tooth can be 

graphically obtained as in Fig. 1 by projecting the 
tangentially normalised cutting force onto the y direction 

and this, in turn, projected onto the chip thickness direction 
r, which leads to 

 
(16) 

where 𝑇𝑇: = 𝑇𝑇c  𝑇𝑇c⁄ = tan 𝑇 stands for the cutting force 
ratio. Thus, the 0th (mean) directional factor β0 and the 1st 
modulation β1 can be respectively obtained by performing 

the following integrals: 

 
(17) 

and 

 

(18) 
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Fig. 2 Isocurves of the directional factor harmonic ratio 𝑇𝑇 with increasing engagement and cutting force ratio for different 
number of teeth. 

where the engagement limits [φen, φex] are defined through 
the engagement angle ϕ and the milling strategy ([0, ϕ] for 
up-milling  (UM) and [π-ϕ, π] for down-milling (DM)). 

However, immersions higher than the half-immersion case 
are hardly ever applied in thin-walled part milling as they 
may result in an excessive static deflection of the part. 

Therefore, the 0th and 1st harmonics of the directional factor 

controlling the flip stability only depend on three 
dimensionless parameters: the combination of engagement 
angle ϕ and milling strategy, number of teeth Z and the 
cutting force ratio kr (see Fig. 2). The latter is generally 

experimentally measured or estimated [Budak 1996], and 
oscillates within the range 0.1-0.5 for most of the tool-

material combinations. Thus, it is possible to study the 
influence of key process parameters, namely the radial 
engagement and number of teeth, on period-doubling 
stability in a dimensionless way by simply studying their 
effect on β0 and β1. This allows a more intuitive process-

planning, as the optimisation of the process parameters 
based on the directional factor will remain optimal 
regardless of any variation of the part dynamics as a 
consequence of material removal during the machining 
process or along the tool axis as a consequence of the local 
modes of the part.  

Based on this, the shape, relative location and magnitude 
of the flip stability limit is studied in the following sections.  

3.2 Shape and relative location of the flip lobe and 
Hopf/flip prevalence: cutting zones. 

The ratio between the first and zeroth harmonics of the 
directional factor rβ is a measure of how interrupted the 

regeneration is. Accordingly, its value, together with the 
sign of β0, control the shape, relative location and 

prevalence of the flip lobes [Iglesias 2016].  

Hence, for thin-walled part milling we can study what kind 
of lobe distribution is expected depending on the 
engagement and the number of flutes, regardless of the 
system dynamics. Fig. 2 shows the ϕ - kr isocurves of the 
harmonic ratio rβ for the most common teeth configurations 
(Z = 2, 3, 4, 5, 6, 8), for up- and down-milling strategies. 

According to these charts, it is possible to identify three 
cutting zones for thin wall milling: 

  Zone I  Continuous cutting zone. At this zone, rβ < 0.5: 

the cutting fluctuates very little with respect to the mean 
value, so Hopf minimum is below the flip minimum. This 
is achieved for 4 or more flutes and immersions nearby 
half-immersion. For UM, it will be a negative directional 
factor cutting ( I- , β0 < 0), so the flip lobe will be located 

to the left of Ω = 2𝑇n/Z and the flip chatter frequency 

will be below the natural frequency of the part. For DM, 
it will be a positive directional factor cutting, (I+, β0 > 0) 

so it will be located to the right, with chatter frequencies 
above ωn.  

  Zone II  Interrupted cutting zone. At this zone, 0.5 < rβ 

< 1: the peak-to-peak oscillation of the cutting is larger 

to the mean value, so the flip minimum will dominate 
over Hopf. It will take place for cutters with 2 or 3 flutes 

or in the very low radial immersion zone for any number 
of teeth. The directional factor will mostly be positive 
(II+), so the flip lobe will be located to the right of Ω =
2𝑇n/Z most of the times. Negative directional factor 
cutting (II-) is however possible if few flutes and 
immersions higher than ϕo are used under UM. 

  Zone III : Highly stable cutting zone. At this zone, rβ > 

1: the peak-to-peak value of the cutting is at least two 

times the mean value. The flip lobe will dominate and 
the vast lobe will be located at both sides of Ω = 2𝑇n/Z, 
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with chatter frequencies going from below to above of 
ωn. It is only possible under UM and nearby ϕo.  

This may lead to the wrong conclusion that zone III presents 
a very large flip chatter likelihood because the fluctuation of 
the cutting is very large. Fig. 3 shows the evolution of β0, β1 
and rβ with the engagement for the Z = 3 and kr = 0.4 case. 
As the engagement approaches ϕo, the mean value of the 

directional factor decreases as the projection of the 
tangential force cancels the radial one dominating at very 
low immersions. Consequently, the period-doubling 
behaviour becomes dominant over the traditional Hopf even 
for a very low oscillatory cutting and hence a high flip critical 
stability. Because of that, zone III is the most preferable 
zone for achieving a stable cutting. 

  

Fig. 3 Evolution of the mean directional factor β0, amplitude 
of the first harmonic of the directional factor |β1| and the ratio 
rβ for kr = 0.4, Z = 3 and increasing radial engagement. 

3.3 Optimal engagement for flip bifurcation 

Once the shape and location of the flip lobe with the 
variation of the directional factor relative to its mean value 
(rβ) are defined, the second key aspect is the absolute 

minimum depth of cut point of the lobe, provided by the 
absolute variation of the directional factor with respect to its 
mean value, related to |β1|.  

In thin-walled parts damping is usually very low and, 
consequently, the flip chatter frequency at the minimum is 
very close to ωn, that is, λmin ≈ 1. Consequently, the influence 

of process parameters in the flip stability limit on (14) is fully 
condensed in the amplitude of the first harmonic |β1| and the 
number of teeth Z. Bearing this in mind, it is possible to 
define a dimensionless critical depth of cut as α = (|β1|Z)-1, 

which uniquely depends on the radial engagement, number 
of flutes and the cutting force ratio.  

When the aim is to maximise the Hopf stability in thin-walled 
part milling, it is possible to find an engagement at which 
the mean directional factor β0 is cancelled and a theoretical 

infinite stability can be achieved [Sanz-Calle, 2021]. 
Similarly, if the flip stability of the main lobe is to be 
maximised, the amplitude of the of the first harmonic |β1| 

should be minimised. 

 

 

Fig. 4 Evolution of Re β1 and Im β1 with the angular position 
for Z = 5 and kr = 0 and the optimal case for |β1| = 0.  

In this case, β1 is a complex number, which implies that both 
real and imaginary parts of β1 have to be cancelled for an 
ideal infinite stability. Unfortunately, cancelling Re β1 and Im 

β1 at the same time for a fixed value of kr and Z is only 
possible for certain pairs of φen and φex, which generally do 

not correspond to up- or down-milling configurations or 
which may even not be realisable —apart from the slotting 
configuration if an odd number of flutes higher than 2 is 
considered—.  

Fig. 4 shows the evolution of Re β1 and Im β1 with the 
angular position for the Z = 5 and kr = 0 case. As can be 

observed, if either up- or down-milling strategies are set, it 
is not possible to find an engagement ϕ which 

simultaneously cancels both real and imaginary parts. 
Instead, the infinite period-doubling stability is found at an 
intermediate case, whose application in thin-walled part 
milling is unfeasible. Therefore, in thin-walled part milling it 
is not possible to find an engagement that cancels |β1|, the 

theoretically infinite milling stability can only be achieved 
through a proper cutter helix tuning instead of a radial 
engagement tuning [Zatarain 2006, 2010]. 

Nonetheless, in cases where the effect of the helix cannot 
be exploited to cancel the directional factor harmonics, it is 
possible to find engagements for UM which, while not 
leading to infinite stability, they do provide maximum 
stability as shown in the dimensionless depth of cut ϕ - kr 

isocurves in Fig. 5. These stability extrema can be 
calculated by simply deriving |β1|2 with respect the 
engagement angle ϕ for the two milling configurations and 

setting it equal to zero, that is, 

 

(19) 

An extremum will take place when any of the three factors 
in (19) becomes zero. In the first term, it is easy to see that 
the half-immersion ϕ = π/2 situation is an extremum for both 

UM and DM. The extremum provided by the second term, 
which is a practical value only under UM and which is 
independent of the number of flutes, results in 
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Fig. 5 Dimensionless depth of cut isocurves for up-milling and different number of flutes. Optimal engagements for flip and 
Hopf chatter are provided in dashed and continuous black lines, respectively. Left charts: isocurves obtained semi-
analytically. Right charts: isocurves obtained with semidiscretisation for the ζ = 1.96% case from Tab. 1.  

 (20) 

coinciding with the stability minimum of Hopf chatter [Sanz-
Calle, 2021]. This engagement represents a local stability 
minimum unless cutters with Z = 6 and kr > 0.41 or Z = 8 and 
kr > 0.3 are considered.  

The rest of the engagement extrema are originated by the 
third term of (19) for both UM and DM: 

 (21) 

Among the latter, it is particularly interesting the stability 
maximum of UM in the low immersion zone shown in Fig. 5, 
as the optimals corresponding to higher engagements 
would have the counterpart of an excessive static deflection 
and considerable Hopf chatter likelihood. Unfortunately, the 
transcendental nature of (21) impedes the obtention of this 
engagement in a closed-form. Instead, it is possible to 
approximate this low immersion maximum ϕf for UM by 
means of a 2nd order Padé estimate at ϕ = 0 of (21), leading 

to 

 
(22) 

The expression (22) provides a useful rule for process 
planning whenever period doubling chatter is the limiting 
problem and the smoothing effect of the helix is not enough 
for achieving a stable cut. In any case, if this flip optimal is 
compared to the Hopf optimal provided in [Sanz-Calle, 
2021] as in Fig. 5, it is noticed that the two optimals are 
actually quite close to each other, which means that a 
compromise for obtaining a high flip and Hopf limits can be 
easily reached by tuning the engagement. 

 

Fig. 6 Ratio of critical dimensionless depths of cut of the two 
milling configurations. Optimal engagements for flip and 
Hopf chatter are provided in dashed and continuous black 
lines, respectively. 

3.4 Comparison between milling strategies 

In order to compare the two milling directions in terms of 
absolute critical limit, the following ratio of dimensionless 
critical depths of cut is defined:
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Fig. 7 Stability lobe diagrams for the y-directional milling case in Tab. 1 and ϕ = 0.15, 0.4, 0.65 and 1.2 rad engagement 
configurations. Upper charts: up-milling cases. Lower charts: down-milling cases. For a better insight, the analytical flip 
stability limit obtained from (11) is also provided in the stability charts. .

 
(23) 

The ϕ - kr isocurves of the ratio χ1 are depicted in Fig. 6. 

Even though it has been previously seen that in UM wider 
flip chatter regions are expected due to their higher rβ, the 

absolute critical limit for flip chatter is generally higher for 
UM. With up to 4 flutes, UM will be superior regardless of the 
radial engagement. If more than 4 teeth are used, there 
exist engagement ranges within which DM presents a 
higher flip limit. Regardless of kr, for Z = 5 DM will be superior 
for immersions higher than 25.5%, whereas for Z = 6 DM will 

be superior for immersions higher than 18.3%. If 8 flutes are 
considered, only immersions between 11.1% and 21.4% 
result in a higher limit for DM.  

4 VALIDATION ON MILLING CASES 

In this section, the aforementioned cutting zones and the 
optimal engagement situation formula are validated by 
means of semidiscretisation simulations [Insperger 2011] of 
the y-dominant milling case in Tab. 1. In addition, the 

superior performance of up-milling strategy in terms of flip 
chatter is also validated. 

The stability lobe diagrams for different engagement cases 
under up- and down- milling are depicted in Fig. 7. As 
predicted, for UM the aforementioned three period-doubling 
lobe shape configurations are possible. For very low 
immersion values, the cutting becomes very interrupted, the 
flip lobe is located to the right of Ω = 2𝑇n/Z, with chatter 
frequencies above ωn. As the immersion increases and 
reaches the highly stable rβ > 1 zone, lobes at both sides of 
2𝑇n/Z take place regardless of the sign of β0 and with 
chatter frequencies above and below ωn. Finally, as the half 

immersion case is approached, the cutting is smoothed out 
and the flip lobe is located to the left of 2𝑇n/Z, with chatter 
frequencies remain below ωn. On the other hand, for down-

milling, interrupted cutting takes place for low immersion 
cases. As half-immersion is approached, continuous cutting 

is achieved. In any case, a positive cutting always takes 
place under down-milling. 

Tab. 1 Milling parameters with the y-directional dynamics 

from [Zatarain 2006] used for the validation. 

dynamics 

ωn (Hz) ζ (%) k (N/μm) 

319.375 1.96 21.7 

tool / process 

Z Ktc (MPa) kr 

5 804.3 0.25 

 

 

Fig. 8 Comparison of the flip stability limit of UM and DM for 
two engagement cases. (a) ϕ = γ = 0.245 rad case. (b) ϕ = ϕf 

= 0.363 rad case. 

Regarding the absolute minimum depth of cut for flip 
chatter, Fig. 8 shows the comparison of the flip stability limit 
under up- and down-milling. Even for the local stability 
minimum ϕ = γ = 0.245 rad case, up-milling outperforms 

down-milling, showing a 187.5% higher minimum stability 
limit. Moreover, if the optimal engagement ϕf = 0.363 rad 

provided in (22) is considered, this difference grows up to 
400% in favour of up-milling. 
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The here provided expressions and dimensionless charts 
have demonstrated that the flip lobe shape can be 
conveniently chosen an its critical depth of cut maximised 
by properly choosing the engagement conditions. By just 
experimentally measuring the cutting force ratio kr, the 

optimal engagement for maximum flip stability can be 
determined from (22). After that, the 0th and 1st directional 
factor harmonics can be respectively calculated in (17) and 
(18), which can be used for determining the cutting zone in 
Fig. 2 and the critical depth of cut in (14).  

Compared to Hopf-kind of chatter, the capacity of 
maximising the flip stability limit by tuning the radial 
engagement is however much more limited. Hence, beyond 
a certain point it may not be sufficient to tune the radial 
engagement to achieve a chatter-free machining. In these 
cases, stability can only be increased or even made infinite 
by properly adjusting the helix pitch to the target axial depth 
of cut [Zatarain 2006, 2010]. 

5 CONCLUSIONS 

Period-doubling chatter can pose a real limitation to the 
productivity when milling thin-walled parts, as the low radial 
immersion and the few number of flutes much promote the 
interrupted cutting that gives rise to flip instability. The most 
widespread general stability algorithms such as 
semidiscretisation can handle this interrupted cutting, but 
their purely numerical nature turns the process planning 
task into a long taking trial and error process. However, in 
thin-walled part milling a dominant modal direction 
perpendicular to the feed motion is most likely to exist. This 
allows condensing the directional factor matrix onto a single 
coefficient, whose first and zeroth harmonic can be used for 
reformulating the stability problem in the frequency domain 
in a very simple form.  

By these means, this paper studies the period-doubling 
stability of thin wall milling by inspecting the influence of key 
process parameters, namely, the number of flutes and 
radial engagement, on the mean and first directional factor 
harmonics. The dimensionless charts for predicting the flip 
lobe shape and Hopf/flip prevalence for both up- and down-
milling are provided, which demonstrate the larger flip 
prevalence in the former. However, when it comes to 
achieve a higher absolute stability limit, up-milling 
outperforms down-milling under almost every practical 
engagement and teeth number combination. An expression 
for determining the optimal low-immersion engagement for 
a maximum stability under up-milling is also provided. 
However, as opposed to Hopf chatter case, it is 
demonstrated that it is not possible to totally cancel the 
period-doubling chatter by simply tuning the radial 
engagement, which indicates that the only feasible way to 
totally eliminate the flip chatter is tuning the cutter helix. 
Finally, the introduced findings are validated through 
semidiscretisation simulations. 
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