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Abstract 

In the context of increasing digitalization, machine tools have a decisive impact on the manufacturing of 
technically sophisticated products. The resulting large amount of available data opens up new 
opportunities for process monitoring and optimization. In this paper, a new in-process tool condition 
monitoring (TCM) approach for end mills is developed. Besides in-process wear determination, the 
presented approach also enables the early detection of tool manufacturing defects on end mills. By 
applying machine learning algorithms, high prediction accuracies can be achieved. The results allow the 
implementation of an in-process TCM system based on internal machine tool data. 
 
Keywords: 

Tool Condition Monitoring; Machine Learning; Defect classification; Internal machine tool data 
 
 

 

1 INTRODUCTION 

New technologies enable in the context of increasing 
digitalization ever more precise production with increased 
product quality. Particularly the production of components 
made of difficult-to-cut materials for the aerospace industry 
is facing high challenges in terms of economic efficiency 
and productivity in an increasingly globalized market 
environment. [Pfeifer, 2006] One strategy for companies to 
address these requirements is to optimize the costs of 
machining. Here, the focus is mostly on the tool as a cost 
driver and essential factor for product quality. [Franco-
Gasca, 2006] To fulfill these objectives additional 
knowledge can be generated based on the increasing 
availability of data from production processes that enable 
data-driven decisions. [Bergs, 2020] In this context, tool 
condition monitoring (TCM) aims to provide information on 
the actual and prospective tool condition by gathering 
machine-related data in parallel to the process. The 
successful implementation of a TCM System enables not 
only the optimized utilization of tool life but also a reduction 
in the use of resources and an increase in product quality. 
[Wang, 2013; Zhu, 2009] This paper presents a new 
approach for TCM based on high-frequently recorded 
internal machine tool data. In this context, a finishing 
process using end mills is used to show how the current tool 
wear can be determined based on machine learning (ML) 
methods. In addition, it is demonstrated how production 
errors during tool production affect the machine tool data. 
These errors are subsequently detected by the TCM 
system using a machine learning based classification 
approach. 

2 STATE OF THE ART 

In the field of TCM, there are many research publications 
and approaches. The literature reviews submitted by 
[Jantunen, 2002], [Rehorn, 2005], [Zhu, 2009], [Teti, 2010], 
and [Lauro, 2014] serve to provide an overview in this large 
field of research. [Jantunen, 2002] introduces TCM 
approaches for turning processes. As a result, cutting 
forces and torques are the most frequently considered 
signals. Signal processing focuses on the use of the time 
domain features of the signals. Spectral analyses with Fast 
Fourier Transforms (FFT) commonly accompany signal 
processing. [Rehorn, 2005] show that many approaches to 
tool monitoring, especially for the inspection of end mills, 
are based on the use of cutting forces. In addition, the 
authors point out that for the application of a TCM system 
in the industry, its simplicity is of primary importance. [Zhu, 
2009] distinguish between the indirect methods for 
determining the tool condition, the measurement of cutting 
forces, vibrations, sound emissions, currents, and image 
data. In addition to the methods mentioned above, analyses 
in the time-frequency domain, such as wavelet transforms 
(WT), are used for feature generation and noise reduction. 
In their summary of the various sensors used, [Teti, 2010] 
provide an overview of the possibilities that exist for TCM. 
The power and currents of the drive motors, forces, torques, 
acoustic emissions, and vibrations are addressed. Based 
on these sensor signals, feature extraction methods are 
used in the time domain, frequency domain, and time-
frequency domain. In addition to conventional statistical 
analysis, Principal Component Analysis (PCA) for 
dimension reduction plays an important role in the time 



 

MM Science Journal | 2021 | NOVEMBER - Special Issue on HSM2021 

5161 

domain. Addressing the frequency domain, the FFT 
dominates, which is extended to the STFT - Short Time 
Fourier Transform for the temporal resolution of the 
frequencies. WT and Hilbert-Huang-Transform (HHT) offer 
further methods in the time-frequency domain. [Lauro, 
2014] present similar scenarios in their publication and 
distinguish five basic monitoring techniques based on the 
measurement of cutting forces, vibrations, temperatures, 
acoustic emissions, and sound. For signal processing, FFT, 
WT, and HHT are examined in the publications, following 
[Teti, 2010]. In addition to these summarizing studies, 
further developments in TCM can also be seen. 
[Benkedjouh, 2018] use blind source separation and WT on 
externally applied accelerometers and force signals to 
separate relevant from irrelevant signal components. The 
subsequent feature extraction is performed based on the 
force signals. Further research on TCM for end milling is 
presented by [Binsaeid, 2009], [Chen, 2005], [Grasso, 
2013], [Li, 2017], [Lin, 2017], [Sevilla-Camacho, 2011] and 
[Niu, 2020]. In addition to the already mentioned 
approaches based on external sensors, these also include 
approaches that use the already installed machine tool 
sensors to provide the necessary signals for TCM. In these, 
mainly internal currents of the drives are used for TCM. It 
can be concluded that all presented approaches provide the 
basis for the implementation of a TCM system. However, 
most of the approaches are associated with high installation 
costs for external sensors, which is why they are not 
suitable for broad application. The first approaches using 
internal machine tool sensors only focus on currents and do 
not consider other promising signals such as position data 
and control deviations.  

In addition to tool wear, this paper aims to detect defects 
that occur during tool manufacturing. The focus is on 
geometry-changing defects of the tool. The literature 
provides some studies for this purpose, which investigate 
the influences of changed tool geometries on the cutting 
forces, the surface of the manufactured workpiece, and tool 
wear propagation. [Westermann, 2015] investigate the 
variation of tool orthogonal rake angle, tool orthogonal 
clearance, and cutting edge roundings on tool wear. They 
observe that the considered variations of the tool geometry 
have an influence on tool wear and the cutting performance 
changes depending on the amount of variation. [Conradie, 
2015] conclude that an increased tool orthogonal clearance 
can reduce flank wear. [Suresh Kumar Reddy, 2005] 
describe that tool orthogonal rake angles between 4° and 
10°  of end mills produce the best surface quality within their 
milling tests of AISI 1045 steel. [Muhammad Syafik, 2017], 
[Kalidass, 2014], [Izamshah, 2013], [Wan, 2017], [Ema, 
1989] provide works investigating the influence of the helix 
angle on tool wear and resulting cutting forces. The results 
illustrate that a change in the helix angle leads to a change 
in the cutting forces. Accordingly, these effects should also 
be detectable in the internal machine data. Studies on 
different tool lifetimes as a result of changed cutting edge 
rounding are obtained from [Westermann, 2015] and [Krain, 
2007].  

Based on the presented state of the art, this paper aims to 
investigate the influence of the mentioned changes in 
geometry characteristics of the end mill on internal drive 
signals. The goal is to detect them during the application of 

the tool. The main objective is to create the basis for a TCM 
system that detects the condition of the tool in terms of wear 
and defect-free geometry. This monitoring enables faulty 
processes to be reduced and the quality to be increased. 

3 EXPERIMENTAL DESIGN & METHODOLOGY 

3.1 Experimental design 

The basis of the investigation consists of a linear end milling 
process with end mills of 8 mm diameter and 4 cutting 
edges, which were supplied by Linner GmbH. The material 
used for the test series is the titanium alloy Ti6Al4V, which 
is often used for the production of aerospace components 
[M'Saoubi, 2015]. The tests were conducted on the vertical 
machining center DMG MORI DMC 850V equipped with a 
Siemens Sinumerik 840D sl control unit. During the milling 
operations, the internal machine tool data is recorded and 
processed with an edge-computing solution, which 
provides data at sampling rates of 500 Hz. The recorded 
internal signals are summarized in Tab. 1, with X and Y as 
the horizontal feed axes an Z as the vertical spindle axis. In 
addition, the NC code block has been recorded for the 
contextualization of the data. A Keyence VHX 5000 
microscope is used to measure the flank wear as the main 
deterioration phenomenon of tool wear. To attain a high 
accuracy of the direct wear measurements at high 
efficiency, the measurement intervals were adapted to the 
three phases of initial wear, linear wear, and progressive 
wear.  

Tab. 1: Recorded machine tool signals 

Signal Axis 

Current, encoder position, control 
position, commanded position, 
desired position, commanded speed, 
control difference 

X, Y, Z, Spindle 

Contour deviation X, Y, Z 

Power, torque Spindle 

 

Tab. 2 shows the experimental design with different end 
mills and technology parameters. Defect-free tools are 
named reference tools (RT). Tools with manufactured 
defects, thus with geometrical deviations, are named error 
tools (ET). The ET were specifically provided with 
production errors that influence the geometric properties of 
the end mills. The resulting deviations, which are shown in 
Tab. 3, result in 14 target classes for the subsequent 
classification task. 

Tab. 2: Cutting parameter variations for the linear milling 
processes. vc = cutting speed; fz = feed per tooth, 

ae = width of cut, ap = depth of cut  

 

 

 

 

Tab. 3 : Resulting deviations on the error tools. The characteristics of the reference tools are marked with 
(reference)

Tool vc in 
m/min 

fz in 
mm 

ae in 
mm  

ap in 
mm 

Reference tools 
(RT) 

50, 80, 
100 

0.05, 
0.025 

0.8, 
1.6 

8 

Error tools (ET) 50, 80 0.05 1, 1.6 8 
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3.2 Methodology – Knowledge Discovery in 
Databases 

Three key approaches for this study are distinguished in the 
scientific literature: Knowledge Discovery in Databases 
(KDD), Cross-Industry Standard Process for Data 
Mining (CRISP-DM), and SEMMA - Sample, Explore, 
Modify, Model, and Assess. While KDD is the original 
concept developed for scientific purposes, the other two are 
adaptations for industry-focused usage. [Fayyad, 1997; 
Shafique, 2014; Wirth, 2000] The comparison of these 
concepts highlights KDD as the most suitable methodology 
within this study, mainly due to reproducibility and high 
acceptance in science.  Fig. 1 depicts the key steps, which 
will be used as the framework for the following chapters of 
this elaboration. 

 
Fig. 1: The KDD Process (own representation according to 

[Fayyad, 1996]) 

4 DATA ANALYSIS 

After the completed raw data acquisition, data analysis 
according to the KDD can be conducted with the following 
steps: Create Target Data, Data Cleaning and 
Preprocessing as well as Data Reduction and Projection. In 
the further course, internal machine tool data and wear data 
will be distinguished. 

4.1 KDD Steps 1 and 2: Create Target Data, Data 
Cleaning, and Preprocessing 

To create a target dataset from the recorded raw machine 
tool data, structural mistakes, as well as wrong data, were 
removed. Furthermore, signals containing no or only 
redundant information were eliminated. After the following 
optimization of data types, the last remaining 
inconsistencies were detected and debugged. The data is 
available in individual data slices by using triggers in the NC  

 

 
Fig. 2: Data-slicing – Extracting data of interest 

code. Each slice contains the data from one process. As 
shown in  Fig. 2, these data must be reduced to the data of 
interest - i.e. the data during which tooth engagement 
persists - for the analysis. This elimination of unnecessary 
data ensures that only data generated during tooth 
engagement is used for the subsequent analysis. This step 
was implemented automatically using the position signals. 
By knowing the process flow, it was possible to extract the 
data of interest automatically. To label the machine tool 
data appropriately, the raw wear data has to be prepared 
as well. The key factor at this point is the interpolation of 
wear data so that one label can be allocated to every milling 
process thus the time-series segment of the internal 
signals. The interpolation methods examined in this study 
include the following: linear, cubic spline, monotonic cubic 
(PCHIP), piecewise cubic (Akima), piecewise polynomial 
(Bernstein basis), and polynomial (Krogh), which were 
calculated using the Python library scipy. [Virtanen, 2020] 
The conducted evaluation results in the use of the Akima 
interpolation method, which results in best fitting wear 
curves. Fig 3 shows one recorded wear curve and its 
interpolation. 

Resulting error / influenced 
geometric attribute 

Characteristics ET class (cf. Fig. 4) 

Helix angle 40° (reference, varies slightly from tooth to tooth);  

30°; 50°, 40° (without variation from tooth to tooth), 40° (even pitch) 

RT, 1, 2, 3, 13 

Rounding cutting edge 8 µm (reference); 16 µm RT, 4 

Tool orthogonal rake angle 12° (reference); 5°; -2° RT, 5, 6 

Tool orthogonal clearance 14° (reference); 7° RT, 7 

Cutting edge radius (for one 

cutting edge only) 

4 mm (reference); 3.7 mm RT, 8 

Radial deviation < 10 µm (reference); 40 µm RT, 9 

Web thickness 4.1 mm (reference); 5.1 mm RT, 10 

Coating coated (reference); uncoated RT, 11 

Grain size reference grain size; larger grain size RT, 12 
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Fig 3: Wear curve for a reference cutter showing 
measured and interpolated values based on Akima 

interpolation 

4.2 KDD Step 3: Data Reduction and Projection 

Having a clean, labeled dataset the variables can be plotted 
over flank wear. This allows a first visual qualitative data 
evaluation and reduction step. As faulty data was already 
eliminated and hidden patterns might be present, all 
resulting signals were used for data projection. Data 
projection comprises the application of features to the set 
of signals, often also referred to as feature engineering. The  
result of the conducted literature research is a portfolio of 
features that are used further on. These are divided into 
features in the time domain, frequency domain, and time-
frequency domain. The calculated time domain features 
are: Median, Mean, Median absolute deviation, Mean 
absolute deviation, Minimum, Maximum, Positive 
turning points, Negative turning points, Neighborhood 
peaks, Root mean square, Skewness, Kurtosis, Centroid, 
Slope, Variance, Auto-Correlation, and Entropy. For the 
frequency-domain following features were used: 

Fundamental frequency, Maximum frequency, Median 
frequency, Minimum frequency, Power bandwidth, Peak to 
peak distance, Spectral decrease, Spectral slope, Spectral 
centroid, Spectral distance, Spectral entropy, Spectral 
spread, Spectral roll-on, Spectral roll-off, Spectral 
skewness, Spectral kurtosis, Spectral variation, and Max 
power spectrum. For the time-frequency domain, the 
wavelet entropy serves for further analyses. All features 
were calculated by using the Python library TSFEL 
[Barandas, 2020] for window sizes of 500, 1000, and 2000 
data points to determine how large the window size needs 
to be to prevent losing relevant information. This was 
necessary to estimate the potential response time of the 
intended TCM-System. After generating the features, all 
481 features were plotted and analyzed qualitatively. The 
evaluation of the plots confirms the use of a feature window 
with 1000 data points, which is a trade-off between signal 
quality and quantity. In total, this results in 77090 samples 
of labeled real data for the following model development. In 
addition, the first analysis shows degressive curves in the 
consideration of the basic statistical features (mean, std. 
etc.) for the drive currents for all axis directions. 
Furthermore, the features spectral skewness and spectral 
kurtosis show promising trajectories when tool wear is 
increasing. In the consideration of the ET plots, some 
features show level differences between the different tools. 
This indicates a good separation of RT and ET. This applies 
independently from the selection of the cutting parameters. 
This manual qualitative feature understanding process 
serves as the basis for the further feature selection process. 
Therefore, different feature selection algorithms based on 
filter (pearson-correlation, chi-square test, F-regression), 
wrapper (recursive-feature-elimination), and hybrid 
(LASSO, lightGBM) algorithms were applied to identify the 
most relevant features for the subsequent machine learning 
based modeling. The results of each algorithm are ranked 
according to the relevance of the respective feature. Within 
the tables containing the ranked features, the absolute 

frequency of the occurrence for each feature is counted. 
This results in the following top 20 features for the 
classification task: signal distance, negative turning points, 
mean absolute difference, mean absolute deviation and 
max power spectrum of Current|X, signal distance, 
neighborhood peaks, negative turning points and mean 
absolute difference of Current|Y, root mean square, mean, 
min of Current|Z, wavelet entropy of control difference 
signals of the Y-axis were selected for the subsequent 
modeling. For regression, the spectral roll-off, root mean 
square, power bandwidth, positive turning points, negative 
turning points median, and mean of Current|X and spectral 
distance, root mean square, min, median, and mean of 
Current|Y, and spectral spread, spectral slope, sprectral 
skewness, spectral kurtosis, spectral centroid, power 
bandwidth, positive turning points, negative turning points 
of Encoder_position|Z were determined as top 20 useful 
features for the regression task. 

5 MODELING 

For a better understanding, steps 4 and 5 of the KDD 
process are presented in this chapter. 

5.1 KDD Step 4: Model development 

After feature selection, the most important features are 
fitted into different machine learning models. To select 
promising algorithms an exploratory analysis of the 
resulting features using pairplots was performed. Fig. 4 
shows a representative example of a pairplot in which 
different features were compared to each other in two 
dimensions to indicate possibilities for the separation of the 
target classes.  

Classification Algorithms  

Considering the data distribution, it can be assumed that 
geometric ML algorithms can achieve good classification 
accuracies. The data in the pair plots are distributed in 
contiguous point clouds, which can already be delimited 
with elliptical borders. Therefore, a k-nearest-neighbor 
algorithm (KNN) should deliver good classification results. 
In addition, a support vector machine (SVM) that separates 
the data with the help of different hyperplanes seems to be 
promising. However, since the data often overlap at the 
edges, an exact separation of the features into target 
classes with SVM seems not always possible. In addition, 
a random forest (RF) algorithm is used.  

 

Fig. 4: Pairplot for three selected features. RT represents 
the reference tool class, ET represent the error tool 

classes 
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The following metrics are used for the evaluation of the 
prediction: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 (1) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 (2) 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (3) 

with TP as true-positive, TN as true-negative, FP as false-
positive, and FN as false-negative predictions. In this case, 
a TP prediction corresponds to a correct predicted class 
affiliation. 

Regression Algorithms  

For the regression of tool wear, linear regression, SVM, 
decision tree (DT), and random forest (RF) were identified 
as suitable models to be used within this study. Linear 
regression works well as a comparative model. The DT 
provides a method to learn suitable wear values for 
sufficiently small intervals of the feature values.  The RF as 
an ensemble learning algorithm enables an estimation of 
the wear value by multihit decision of many generated 
decision trees. The selection of SVMs is based on its 
common application in the literature. For the regression, the 
metrics mean absolute error (MAE) and R-squared (R2) 
were used according to the following equations (cf. [Wu, 
2017]): 

𝑴𝑨𝑬(𝒚, �̂�) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔

∑ |𝒚𝒊 − �̂�𝒊|

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

 (4) 

𝑹𝟐(𝒚, �̂�) = 𝟏 −  
∑ (𝒚𝒊 − �̂�𝒊)

𝟐𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊=𝟏

∑ (𝒚𝒊 − �̅�𝒊)
𝟐

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊=𝟏

 (5) 

with 𝑦𝑖 as true value, �̂�𝑖 as predicted value, �̅�𝑖 as the mean 

of true values, and 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 as the number of samples in the 

test set. 

 

5.2 KDD Step 5: Results & Discussion 

Results for classification  

As shown in Tab. 4 the KNN was able to generate a high 
classification accuracy of 94.66 % for tool defect classes. 
The low dispersion of the misclassifications is remarkable. 
Furthermore, the SVM only achieved a low classification 
accuracy of 39 %. As already mentioned, this is most likely 
due to the overlapping data points of the different classes, 
which could not be properly separated from the 
hyperplanes. The RF was able to generate the model with 
the best classification accuracy of 98 %. However, the 
assumption is that this is overfitting, as the accuracy of this 
algorithm on all training sets reached 100 %. By selecting 
the KNN algorithm for further statements it is worth 
mentioning that when looking at the recall for the class 
reference tool (when considering a binary classification with 
RT and ET as target class), it reaches 99.1 %. In this case, 
only three samples were predicted to not belong to the 
reference tool. The precision for this class achieved 100 %. 
These results show the potential for manufacturing error 
detection in milling tools during their use based on internal 
machine tool data. 
 

Tab. 4: Results for tool defect classification 

Algorithm 
Accuracy 
test set 

Precision Recall 

K-Nearest-
Neighbor 

94.49 % 94.47 % 94.43 % 

Support Vector 
Machine 

38.72 % 39.31 % 38.39 % 

Random 
Forest 

97.99 % 97.99 % 97.97 % 

 

Results for regression 

Tab. 5 shows the mean absolute error (MAE) and R-
squared (R2) for the tool wear regression performed in this 
study. In this case, the decision tree performed best with an 
MAE of 10 µm. This low error for the wear prediction allows 
the conclusion that a sufficient prediction of the current 
condition of the tool is feasible for the wear as well. The 
other models are not able to represent the wear based on 
the data due to the significantly lower scores shown in Tab. 
5. It should be mentioned, though, that at very high flank 
wear values from approx. VB = 300 µm (in this case this 
means the tool is completely worn out), the predicted values 
become less accurate. This is due to the small number of 
samples gathered in this area. In addition, the progressive 
degradation of the tool plays a major role here, which leads 
to significantly more fluctuations during the process and 
thus in the data. Nevertheless, the reached accuracy allows 
an estimation of the remaining tool life under the current 
operating conditions during deployment. However, further 
tests on new data will still be needed to ensure the 
robustness of the developed approach. 

Tab. 5: Results for tool wear regression 

Algorithm 
MAE 

test set 
R2 

Linear Regression 24 µm 65.33 % 

Support Vector Machine 31 µm 41.05 % 

Decision Tree 10 µm 85.77 %  

Random Forest 30 µm 59.87 %  

6 CONCLUSION & OUTLOOK 

In this paper, a new approach that enables the condition of 
a tool to be determined during the milling process is 
presented. In addition to wear regression, production errors 
of the tools, which subsequently affect the cutting process, 
are also included as target variables. A finishing process 
with end mills was used for the investigation. The necessary 
data for the development of the data-driven approaches is 
provided by an edge computing solution that records and 
processes internal machine tool data at a frequency of 
500 Hz. The two underlying approaches, one for the 
classification of defective tools and the other for the 
regression of tool wear, show great potential for in-process 
TCM when looking at their high prediction accuracies. In 
further research, these initial principles will be used to build 
a robust TCM system for this process based on additional 
test series. The focus will be on the transferability of the 
developed approaches to other machining centers. 
Furthermore, the high scores imply that internal machine 
tool data, when recorded at high frequency, provide the 
necessary information with sufficient detail to apply data-
driven models. This shows the great potential of high-
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frequency recorded internal machine tool data, which will 
be used for additional use cases in future work. 
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