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Abstract 

Efficiency plays a major role in many areas of the mechanical processing of metals. Especially in basic 
provision of raw material, for example by cutting components to length during sawing, high penetration 
and thus efficiency as well as high robustness of the process is required. Here, the sawing tool and its 
durability is the decisive component in the process. In today's state of the art, at least in modern sawing 
machines, the condition is recorded via the sawing tool course or also via the motor current. This gives 
the operator an initial indication of the tool condition. In current machines an extensive sensory recording 
for e.g., accelerations as a characteristic for the tool condition is not used. The aim of the investigations 
described in the paper was to use measurement data from various internal and external sensors to record 
the state of the sawing tool wear and to analyse it using machine learning approaches. For this purpose, 
cutting tests were carried out on a modern sawing centre and the acquired measurement data were an-
alysed using a convolutional neural network (CNN). During the tests, the internal and external sensors 
were compared to show which of the sensors used provides the best results in detecting wear on sawing 
tools. The investigations show that the CNN is suitable for detecting tool wear by means of the sensors 
used, which can be used for on-line monitoring. Finally, an outlook is given, and it is shown how the CNN 
can be used for active control in the sawing process. 
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1 INTRODUCTION 

The mechanical manufacturing landscape prevalent today 
makes process monitoring systems indispensable for en-
suring process reliability as well as efficient and economical 
manufacturing systems [Denkena 2016]. The ever-increas-
ing demand for process-monitored production equipment in 
machining is primarily due to the desire to maintain the re-
quired product quality in the face of increased product di-
versity [Denkena 2014]. Especially in basic provision of raw 
material, for example by cutting components to length dur-
ing sawing, high penetration and thus efficiency as well as 
high robustness of the process is required. Here, the saw-
ing tool and its durability is the decisive component in the 
process. The first approaches to process monitoring in the 
field of circular sawing were developed in the early 1990s. 
For the realisation of process monitoring, data from ma-
chine-internal process monitoring systems or from external 
signal sources are generated in the literature mentioned 
[Maulhardt 1991, Zaeh 1995]. One of the biggest problems 
is the development of suitable algorithms for feature selec-
tion [Denkena 2016]. The difficulty in process monitoring is 
that the process behaviour of the individual manufacturing 

systems is often non-linear and dynamic, with the relation-
ships between input and output process variables being un-
known or only partially known [Sick 2000, Toenshoff 1988]. 
This means that for supposedly identical machining condi-
tions the results can be different which is why the behaviour 
of mechanical manufacturing processes is often described 
as chaotic [Pritschow 2004]. Therefore, in this scientific pa-
per, a machine learning approach is described that detects 
tool wear in the circular sawing process of metal materials 
and thus further increases the efficiency of the process 
[Weiland 2018, Tandler 2021]. How and with which algo-
rithms and techniques the data described here can be used 
to develop a self-optimising process is described in 
[Moehring 2020]. 

Machine learning approaches for tool wear detection 

In the field of machine learning, simple mathematical mod-
els are often used to classify data sets or to perform regres-
sions [Aunkofer 2018]. Current models are e.g., the K-near-
est-neighbour model (KNN model) in which neighbouring 
data points are considered in multidimensional coordinates 
or support vector machines (SVM) based on geometric re-
lationships. The detection of tool wear and defects is a wide 
field of research and there are numerous studies on this 
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topic. Successful approaches exist, for example, using vi-
bration and acceleration signals in conjunction with an and 
artificial intelligence approaches [Morales-Menndez 2008]. 
Lamraoui et al. realise the detection of surface properties 
as independently as possible from the process parameters 
with a piezoelectric sensor and a convolutional neural net-
work (CNN). One sensor is attached to the clamping device, 
two others are attached to the tool holder [Lamraoui 2015]. 
Tatar et al. use a non-contact laser vibration measurement 
to detect vibrations, analysing the raw signal as well as the 
spectrum to detect tool wear [Tatar 2008]. Zhang et al. also 
estimate machine parameters to detect wear on the tool by 
updating an SVM via a Kalman-filtered input, they achieve 
a minimum error rate of less than three percent 
[Zhang 2014]. Kothuru et al. choose acoustic signals to de-
tect wear on the tool [Kothuru 2018]. Sorgato et al. measure 
up to 50 percent surface degradation in combination with 
tool wear [Sorgato 2020]. Kim et al. list several studies that 
evaluate machine learning approaches in the field of milling. 
The studies listed relate to different objectives, including the 
detection of tool wear and deformations. The implemented 
approaches all achieve over 80 percent accuracy, despite 
quite different input data [Kim 2018]. In some cases, ma-
chine parameters are used, but also vibration signals. 
Some approaches achieve particularly good results with 
over 95 percent accuracy. In particular, the study by Krish-
nakumar et al. should be mentioned. An acceleration sen-
sor attached to the spindle is used to estimate the tool con-
dition. The acceleration signals are processed by an FFT 
analyser. With an artificial neural network (ANN), they 
achieve 95 percent in tool wear detection [Krishna-
kumar 2015]. In addition to acceleration signals, Khorasani 
also use machine parameters as input for an ANN. They 
thus achieve an accuracy of over 99 percent [Khoras-
ani 2017].  

In the following paper, the common approaches were com-
pared in an evaluation matrix, see tab 1. The CNN ap-
proach was chosen, which is described in the following and 
examined based on machining tests. 

Tab. 1: Approaches to the use of artificial intelligence in ma-
chining. 

Properties KNN SVM ANN CNN 

Generalisation 
capability 

o o + + 

Automatic feature 
extraction 

- - o + 

Application 
performance 

- o + + 

Complexity of the 
model 

+ + o o 

Model training 
effort 

+ + - - 

Feature 
extensibility 

- - + + 

Consideration of 
features in the fre-
quency range 

o o o + 

Data preparation 
scope 

- - - + 

Overall valuation - o o + 

2 METHODOLOGY FOR THE SAWING PROCESS 
ANALYSIS USING MACHINE LEARNING 

2.1 Experimental cutting tests 

Experimental machine and kinematics 

The machine used in the tests is a near-series circular saw 
centre of the company KASTO Maschinenbau GmbH & Co. 
KG. In addition to an automatic material feed system, it is 
equipped with a bar feeder for the storage of different pro-
files, diameters, and materials. Fig. 1 shows the three-di-
mensional external view of the experimental machine 
KASTOvariospeed C15.  

 

Fig. 1: Circular saw centre Kasto C15 [KASTO 2016]. 

The machine is designed as swivel arm kinematics, shown 
in fig. 2. The feed of the machine is arc-shaped in the y-
direction. However, due to the size ratio of the workpiece to 
the tool, the feed can be considered almost linear. This sim-
plification can be confirmed by looking at the motor current 
signals in the later part of the paper, see section 2.3. 

 

Fig. 2: Circular saw machine kinematics [Georgi 2018]. 

Applied sensor technology 

Fig. 3 shows the mounted sawing tool, marked with 1 and 
the acceleration sensor marked with 2. The accelerometer 
is a 3-axis MEMS sensor ADXL372 from Analog Devices 
Inc. The measurement range is ± 200 g with a bandwidth of 
200 Hz to 3.2 kHz. The motor current and the blade path of 
the sawing tool are taken directly from the switch cabinet of 
the machine. The tool blade path is recorded by means of 
an eddy current sensor, which is installed as standard by 
the manufacturer of the circular saw machine. Furthermore, 
fig. 3 shows the schematic structure of the measurement 
data acquisition including the microcontroller. 

 

Fig. 3: Experimental setup [Georgi 2018]. 
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Mathematical fundamentals in the circular sawing process 

Fig. 4 shows the circular sawing process and its parame-
ters. 𝑑𝐾 represents the diameter of the circular saw tool. For 

the experiments, the diameter 𝑑𝐾 is 425 mm with 60 teeth 

on the circumference. The tooth width is 2.7 mm, which is 
equal to the cutting width 𝑎𝑝. The test sample has a diame-

ter 𝑑 of 50 mm and consists of the material 42CrMo4 

(1.7225). This results in the cutting parameters listed in tab. 
2, cutting speed of 𝑣𝐶 100 m/min and feed per tooth 𝑓𝑧 of 

0.07 mm. The pitch 𝑇 indicates the distance between two 

cutting edges. It is calculated by dividing the circumference 
of the circular saw blade by the number of teeth 𝑧. In addi-

tion to the pitch 𝑇, the pitch angle 𝜏 can be calculated. Here, 

the total angle of the circular saw blade is divided by the 
number of teeth 𝑧 of the circular saw blade. The maximum 

cutting angle 𝜑(𝑑) depends on the workpiece diameter 𝑑 

and the circular saw blade diameter 𝑑𝐾 and can be calcu-

lated according to eq. 1. 

𝜑(𝑑) = 2 ∗ arcsin (
𝑑

𝑑𝑘
)      (1) 

The maximum cutting path 𝑙𝑚𝑎𝑥 can in turn be determined 

by the relationship between the cutting angle and the cir-
cumference of the circular saw blade. The cutting an-
gle 𝜑(𝑑) and the pitch angle  𝜏 can be used to determine the 

teeth 𝑧𝑒 (𝜑) that are in cutting engagement during machin-

ing, see eq. 2 [Tschaetsch 2007]. 

𝑧𝑒 (𝜑)  =
𝜑(𝑑) 

𝜏
       (2) 

 

Fig. 4: Characteristics in the circular sawing process 
[Georgi 2018]. 

Finally, the cutting force 𝐹𝐶 (𝜑) and the cutting power 𝑃𝐶 (𝜑) 

can be calculated via eq. 3 or eq. 4. In addition to the teeth 
in mesh determined in eq. 2, the tooth feed 𝑓𝑍, the rise 

value 1 − 𝑧 and the specific cutting force 𝑘𝑐 1.1, the process 

factor 𝑘𝑆 and the wear correction 𝑘𝑇 are used. 

𝐹𝐶 (𝜑) = 𝑎𝑝 ∗ 𝑓𝑧
1−𝑧 ∗ 𝑧𝑒 (𝜑) ∗ 𝑘𝑐 1.1 ∗ 𝑘𝑠 ∗ 𝑘𝑇    (3) 

𝑃𝑐 (𝜑) = 𝐹𝑐 ∗ 𝑉𝑐        (4) 

Parameters of the machining tests 

To keep the scope of the tests small, one combination of 
machine parameters is used initially. The machine param-
eters investigated in the tests are the cutting speed 𝑣𝐶  and 

the feed per tooth 𝑓𝑧. Furthermore, four identical tools with 

different degrees of wear are used. For static hedging, each 
test parameter is repeated 15 times. The test parameters 
can be gathered from tab. 2.

Tab. 2: Experimental parameters. 

Number 
of cuts 

Number 
of tools 

Cutting speed Feed per tooth 

𝑛𝐶 𝑛𝑇 𝑣𝐶 𝑓𝑧 

[-] [-] [m/min] [mm] 

15 4 100 0.07 

2.2 Classification of the tool wear 

Fig. 5 shows the characterisation of the tool wear as well as 
the angels of the tool teeth. One possible cause of wear is 
abrasion of the tool because of sliding between the tool and 
the workpiece by hard components of the workpiece mate-
rial. The abrasion is supported by high surface tempera-
tures on the rake and flank and the associated softening of 
the cutting material and is used as a characteristic value in 
this paper in the form of the wear mark width 𝑉𝐵 

[Denkena 2010, Liebrecht 1990]. Figure 5a shows the un-
used tool. Figure 5c to 5e shows the wear progression from 
tool 2 to tool 4. The recorded wear characteristics are 
shown in Table 3. Figure 5b shows the angles on the saw 
tooth. The clearance angle 𝛼 is 5 degrees. The wedge an-

gle 𝛽 is 110 degrees. The rake angle 𝛾 is a negative rake 

angle of -25 degrees. 

 

Fig. 5: Tool characteristics and wear criteria [Georgi 2018]. 

Another characteristic value used in the paper is the area 
performance of the tool 𝐹𝐿, i.e., the cross-section of the 

workpiece already machined by the tool. Both characteristic 
values for the tools used in the tests can be taken from 
tab. 3. 

Tab. 3: Tool wear characteristics. 

Tool Nr. Area performance  Wear mark width  

𝑛𝑇  𝐹𝐿 𝑉𝐵 

[-] [m²] [µm] 

1   0.00     0.00 

2   6.80   79.56 

3 13.00 112.03 

4 24.00 173.95 

2.3 Development of the sensor values 

The sensor characteristics defined for the algorithm devel-
opment are described below. 

Acceleration 

To develop a corresponding characteristic value for the 
sensor data recorded by the 3-axis acceleration sensor, the 
signal was first observed in time domain. After no corre-
sponding significant feature could be detected in the time 
signal, see fig. 6a, the time signal was transformed into the 
frequency domain using Fast Fourier Transformation (FFT), 
see fig. 6b. As Figure 6b shows, the first significant peak in 
the frequency domain was selected as the characteristic. 
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This value represents a multiple of the tooth meshing fre-
quency. The maximum peak height of this characteristic is 
used as a characteristic value for the machine learning ap-
proach. 

 

Fig. 6: Characteristic value definition of the acceleration 
signal. 

Sawing tool course 

For the definition of a further characteristic value as input of 
the machine learning algorithm, the signal of the eddy cur-
rent sensor of the machine manufacturer is used. The sig-
nal of the sawing tool course is considered in the time do-
main. As fig. 7 shows, the sawing tool course changes de-
pending on the tool wear condition. The rise angle of the 
sawing tool course can therefore be used as a characteris-
tic value for the machine learning approach as a wear-re-
lated feature. A negative gradient is possible and repre-
sents the new tool in the example shown in fig. 7. 

 

Fig. 7: Characteristic value definition of the sawing tool 
course signal. 

Motor current 

The last input parameter for the machine learning algorithm 
is the motor current during machining, see fig. 8. Here, the 
energy and thus the area under the signal curve of the mo-
tor current sensor is used as a characteristic for the wear-
related change. The motor current signal provided the best 
result compared to the two other parameters (acceleration 
signal, sawing tool course) defined. 

Fig. 8: Characteristic value definition of the motor current 
signal. 

2.4 Structure of the machine learning approach 

Fig. 9 shows the machine learning scheme developed in 
the experiments. The CNN was developed in Python and 
Kreas was used as the freeware for the training. SoftMax is 
used as the activation function in the output level since it is 
a classification with several classes. The SoftMax function 
outputs a probability of class membership for each class in 
the output vector and tries to best approximate the actual 
class. It ensures that the sum of the probabilities over the 
output vector is 1. The deviation between the actual and 
predicted probability distribution is calculated using the 
cross-entropy function and then used to update the model. 
The data set is split in a ratio of 60 % training samples to 
40 % test samples. 

 

Fig. 9: Convolutional neural network. 

3 EXPERIMENTAL RESULTS 

3.1 Loss 

The loss value is a sign of quality. It indicates convergence, 
overfitting and underfitting. High loss values indicate a 
poorly fitted network. It should be noted that the loss values 
are only an abstract measure. For the loss value, the cross-
entropy loss function seen in eq. 5 is used to calculate the 
logarithmic deviation between actual and estimated class. 
In eq. 5, 𝑎 is set to a low value so that the logarithm does 

not run into the infimum and the computing times of the net-
work does not increase significantly. 

𝐿𝑜𝑠𝑠 =
∑ 𝑦𝑖 ∗𝑙𝑜𝑔 (𝑎+ �̂�𝑖))𝑖

𝑖
      (5) 

Fig. 10 shows the results of the loss values for the CNN 
used. The loss value for the developed motor current char-
acteristic shows a good result. 

 

Fig. 10: Loss of the CNN algorithm. 
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The loss value approaches the abscissa of the diagram as-
ymptotically after about 1500 interactions in the CNN algo-
rithm. The defined characteristic value for the sawing tool 
course also shows an acceptable result. The loss value of 
the sawing tool course characteristic value no longer 
changes after approx. 800 iterations. With the acceleration 
characteristic values, only the y-direction of the sensor sig-
nal and the feed direction of the saw blade provide an ac-
ceptable result. The loss value no longer changes from 
about 700 iterations of the CNN algorithm. 

3.2 Accuracy 

The accuracy can be used as a further characteristic value 
for the quality of the CNN. The accuracy function is intro-
duced that tolerates a deviation of up to 0.2, where 𝑑𝑖𝑓𝑓𝑚𝑎𝑥 

is defined as the maximum accepted deviation. The func-
tion is shown in eq. 6 - 7. The deviations are averaged over 
all classes. This accuracy function does not consider weak 
classifications. For the actual class at least 0.8, for the rest 
a maximum of 0.2 must be reached to be considered as a 
successful classification. 

𝑑𝑖𝑓𝑓𝑚𝑎𝑥 = |𝑦 − �̂�|      (6) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ {

1,  𝑖𝑓 (𝑑𝑖𝑓𝑓𝑖<𝑑𝑖𝑓𝑓𝑚𝑎𝑥) 

0,  𝑖𝑓 (𝑑𝑖𝑓𝑓𝑖>𝑑𝑖𝑓𝑓𝑚𝑎𝑥 )
𝑖

𝑖
      (7) 

For a further impression of the accuracy of the CNN, a sec-
ond approach is used to determine it. The accuracy is de-
termined by the strongest class, where 𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥 deter-

mines the index of the maximum value. This accuracy de-
termination does not consider the weighting of the individual 
classes. It is referenced as the classification accuracy and 
is shown in eq. 8. The results for the network used for the 
tests are shown in fig. 10 and fig. 11.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 =  {
1,  𝑖𝑓 (𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥(�̂�) = 𝑚𝑎𝑥𝑖𝑛𝑑𝑒𝑥  (𝑦))

0,  𝑒𝑙𝑠𝑒
   (8) 

Fig. 11 shows the accuracy achieved by the CNN in the 
characterisation of the corresponding wear for each sensor 
signal. The wear condition of the circular saw tool can be 
detected very well and with almost 100 % via the motor cur-
rent characteristic value. Furthermore, fig. 11 shows that by 
means of the extracted sawing tool course characteristic 
value, the wear condition of the sawing tool was correctly 
predicted by about 88 %. The acceleration characteristic 
value in the y-direction also showed a good result in the 
correct prediction of the tool wear condition. It is about 80 % 
for the acceleration characteristic value in the y-direction. 
The other acceleration values in z- and x-direction do not 
show a clear result. The accuracy is about 70 % in the x-
direction and 62 % in the z-direction. 

 

Fig. 11: Accuracy of the CNN algorithm. 

4 CONCLUSION AND OUTLOOK  

In this paper, a corresponding machine learning algorithm 
was developed using internal and external machine sen-
sors and was tested based on machining experiments. The 
developed machine learning algorithm is a convolutional 
neural network CNN with five input values and four output 
values as well as two hidden layers. Five sensor signals 
were examined for the input values and a corresponding 
sensor characteristic value was developed for each. For the 
output values, the wear condition of four identical circular 
sawing tools was considered. In addition to the area perfor-
mance value 𝐹𝐿, the wear mark width 𝑉𝐵 was used. The 

wear was divided into four areas: zero, low, high and ex-
treme. Using the developed input and output parameters, 
the CNN was first trained and then verified using independ-
ent measurement data. As shown in Fig. 12, it was possible 
to demonstrate that the sensor parameters extracted can 
identify the wear on the sawing tool used to varying de-
grees. 

 

Fig. 12: Accuracy of the CNN algorithm. 

The MEMS acceleration sensor used performed most un-
palatable in the detection of tool wear. Especially in x- and 
z-direction the accuracy was 60 – 70 %. In the feed direc-
tion, y-direction, the wear condition could be detected with 
about 80 % accuracy. The sawing tool course signal used 
showed an accuracy of 88 %. The most significant result in 
the tests was the motor current characteristic value. The 
achieved accuracy for the motor current characteristic value 
was close to 100 %. 

To verify and further modify the algorithm, it is planned to 
investigate further parameter variations. In addition to the 
machine parameters, cutting speed 𝑣𝐶 and the feed per 

tooth 𝑓𝑧, other materials and workpiece profiles as well as 

tools are to be considered to use the developed algorithm 
for series machining of components. Furthermore, the CNN 
will be used to design an adaptive control system that varies 
the described machine parameters in such a way that the 
circular sawing process can be designed more economi-
cally. In this case, this means lower tool consumption due 
to higher utilization of the tools, e.g. higher cutting speeds, 
but also longer use due to the sensory observation of the 
service life cycle. 
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