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An expansion chamber for narrow part of cavitation nozzles is 
developed. Designs of cavitation nozzles with expansion chamber 
based on cylindrical nozzle and Venturi nozzle are proposed. The 
results of calculations of the fluid flow in the presented nozzles 
show the areas in nozzle, where cavitation is generated, their 
number, form and power. The plot of volume fraction of vapor 
phase shows the causes of an increase in the intensity of 
cavitation in new nozzles with expansion chamber. The main of 
them is that due to introduction of the expansion chamber, a 
little area of cavitation generation in the narrow part of cavitation 
nozzle turns to large one, that causes significant increase in 
cavitation intensity. The results of comparative experimental 
studies, which confirm the superiority of cavitation nozzles with 
the expansion chamber over the basic ones, show that cavitation 
nozzle with expansion chamber can provide 3 times higher 
intensity of cavitation, than basic cylindrical nozzle. Also, 
cavitation nozzle with expansion chamber on the basis of Venturi 
nozzle can provide 1.5 times higher cavitation intensity, than 
basic Venturi nozzle. 
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1. INTRODUCTION 

Cavitation is the phenomenon of appearance of steam, gas or 
gas-vapor bubbles in the fluid from the nuclei under the action of 
local low pressures with their possible subsequent collapsing. 
Cavitation is investigated as a negative phenomenon [Macala 
2009 and 2017, Panda 2013 and 2021, Valicek 2016, Hutli 2019, 
Wu 2019, Tong 2020, Jasper 2021, Labun 2021, Kurdel 2022], as 
well as a way of intensification of technological processes, in 
particular processes of chemical technology [Ghorbani 2017, 
Valicek 2017, Pandova 2018, Zhao 2020, Karathanassis 2021]. 
Due to the widespread usage of cavitation in the chemical 
industry, the urgent task is to develop new, more efficient 
cavitators [Baron 2016]. Hydrodynamic cavitators, in particular 
cavitation nozzles, allow to perform intensive cavitation 
processing at low power consumption and with high productivity. 

2. THE PROPOSED CONSTRUCTIVE SOLUTION 

The concept of a new cavitation nozzle is to replace the flow of 
fluid in the channel with the flow of fluid in vacuum [Panda 2016 
and 2019, Qian 2019, Peng 2021]. The idea of flow motion in 
vacuum is realized by introducing an expansion chamber into the 
geometric location of the narrow part of the cavitation nozzle 
[Panda 2014, Zaloga 2019, Li 2021]. 
The constructive solution is presented graphically on Fig. 1. 
 

 

Figure 1. Schematic design of a nozzle with an expansion chamber: 

1 – inlet; 2 – transition confuser; 3 – narrow part; 4 – expansion chamber; 
5 – additional low pressure area 

The proposed expansion camera can be applied to any existing 
cavitation nozzle to increase the intensity of cavitation. 
Hereinafter, the term "new cavitation nozzle" will mean the 
cavitation nozzle with expansion chamber. 

2.1 DESIGNS OF DEVELOPED NOZZLES 

Several designs of cavitation nozzles have been developed on the 
basis of the presented design solution. The prototypes for the 
new nozzles are cylindrical nozzle and Venturi nozzle, the 
sketches of which are shown on Fig. 2. 
 

 
а)     b) 

 

Figure 2. Prototypes for a new cavitation nozzle: 

а – cylindrical nozzle; б – Venturi nozzle; 1 – inlet, 2 – transition confuser; 
3 – narrow part; 4 – diffuser 

The cylindrical nozzle has simple design, that’s why it clearly 
shows the effect of expansion chamber introduction. The Venturi 
nozzle is one of the most common and effective cavitators, so the 
effect of modifying it with the expansion camera is an actual 
issue. The designs of new nozzles are presented on Fig. 3. 
 

  
а)     b) 

Figure 3. Designs of new cavitation nozzles: 
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а – on the basis of cylindrical nozzle; b – on the basis of Venturi nozzle; 1 
– inlet, 2 – transition confuser; 3 – narrow part; 4 – expansion chamber; 

5 – diffuser 

Unlike Fig. 1, where the narrow part of the nozzle degenerates to 
a point, in real constructions (Fig. 3) a certain length of the narrow 
part is laid. 
The developed design is not only efficient (which will be proved 
further) but also technological. In particular, the length of the 
narrow part h and the angle of the diffuser of the expansion 

chamber  = 60º were introduced from the point of 
manufacturing suitability [Michalik 2014, Murcinkova 2017, 
Olejarova 2017 and 2021], in accordance with Figure 4.  
 

 

Figure 4. Longitudinal section of nozzle with expansion chamber  

Such constructive elements are designed to allow the new 
cavitation nozzle to be produced by drilling. The angle φ is chosen 
equal to 60º, which corresponds to the angle of sharpening of a 
standard spiral drill [Mrkvica 2012]. Size h was introduced to 
avoid sharp edges at the entrance to the expansion chamber and 
to allow appropriate tolerance for this size [Krenicky 2022]. 

2.2 MODELING OF NEW CAVITATION NOZZLES 

Fluid flow though new cavitation nozzles was simulated to explain 
the reasons for their effectiveness and compare the results with 
similar calculations for the corresponding basic nozzles 
[Duplakova 2018, Kuznetsov 2020]. 
The simulations were performed using FloSilmulation (FloWorks) 
module from SolidWorks, which is Dassault Systemes software 
[Long 2020, Park 2020, Khan 2021]. 
Water was selected as the working fluid. The simulation results 
should be compared in pairs: a new nozzle with a cylindrical 
expansion chamber is compared to a cylindrical nozzle, and a new 
Venturi based nozzle will be compared to a Venturi nozzle. 
Figure 5 presents a 3D model for simulating the flow through a 
fluid-submerged nozzle. 

 

Figure 5. 3D model and boundary conditions of calculation 

As a result of the calculations, pressure, velocity, density, mass 
fraction of the vapor phase, etc. plots were obtained for fluid flow 
in each of the nozzles.  
By the term "cavitation intensity" we mean the value determined 
by such parameters of the cavitation bubble collapsing as the 
maximum velocity of the cavitation bubble wall, the maximum 
pressure and temperature inside the cavitation bubble. 
Among the other values, by which the cavitation intensity in the 
nozzle can be estimated, the volume fraction of vapor phase 
should be distinguished. It directly characterizes the degree of 
fluid rupture and, accordingly, the intensity of cavitation in this 
area. Therefore, we will use plots of the volume fraction of vapor 
phase to estimate the cavitation intensity in a particular nozzle. 
Let’s consider plot of the volume fraction of steam for the basic 
cylindrical nozzle (Fig. 6). 
 

 

Figure 6. Fragment of vapor volume fraction plot for a basic cylindrical 
nozzle 

The plot (Fig. 6) shows that cavitation originates in two regions - 
at the entrance to the narrow part near the channel walls and at 
its exit. According to the calculation, the main zone of cavitation 
origin is the area at exit of the narrow part. This zone is 
characterized by a relatively large size, but the proportion of the 
vapor phase here does not exceed 0.05. 
The zone at the inlet to the narrow part has the largest amonut 
of the vapor-gas phase (0.09), but has much smaller geometric 
dimensions, so its effect on the cavitation intensity is much 
smaller [Mascenik 2014]. Similar results were obtained, which 
presents a similar plot of the volume fraction of the vapor phase 
for a similar nozzle. Let’s consider how the hydrodynamic 
situation changes when the expansion chamber is introduced 
into the basic cylindrical nozzle. 

 

 

Figure 7. Fragment of vapor volume fraction plot for a new cavitation 
nozzle based on a cylindrical nozzle 
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Fig. 7 shows that a wall layer of a high vapor volume fraction has 
formed in the wall region of the expansion chamber. This layer 
has a much higher volume fraction of the vapor phase, reaching 
0.87, and significant geometric dimensions. Such a wall layer is 
much more powerful cavitation generator than any zone in the 
basic cylindrical nozzle. In addition, zone of high volume of vapor 
phase at the outlet of the nozzle is also presented and has about 
the same proportion of vapor phase as in the cylindrical nozzle, 
however, compared to formed wall layer, it is ineffective 
[Vagaska 2017, Bozek 2021], and it is practically not visible on the 
plot. 
Similarly, we compare the plots for the Venturi basic nozzle and 
the corresponding new nozzle (Fig. 8). 

 

Figure 8. Fragment of the vapor volume fraction plot: a - basic Venturi 
nozzle (up); b - new nozzle based on the Venturi nozzle (down) 

The Venturi nozzle (Fig. 8a) is an effective cavitator. The main 
zone of cavitation generation is wall region at the start of the 
diffuser, where the volume fraction of the vapor phase reaches 
0.8. Here is also an increased proportion of the vapor phase and 
in the center of the flow, but it reaches much smaller values and 
is almost invisible on the plot [Xu 2017, Chaus 2018, Zaloga 2020]. 
When introducting the expansion chamber (Fig. 8b) into the 
Venturi nozzle, cavitation generation zone moves into the wall 
layer of this chamber [Majernik 2020], the maximum fraction of 
the vapor phase increases to 0.9. The overall size of the cavitation 
generation zone is slightly increasing. Zone of cavitation 
generation in the diffuser weakens, the maximum fraction of 
vapor in it reaches only 0.05. As a result, the cavitation intensity 
in this nozzle should be higher than in the Venturi nozzle, but with 
smaller gap, than in case of cylindrical nozzle [Dyadyura 2017a, 
Yang 2019]. 

3. EXPERIMENTAL CONFIRMATION OF EFFECTIVENESS OF NEW 
CAVITATION NOZZLES 

Several series of comparative experiments of new cavitation 
nozzles to basic ones were conducted for an experimental 
confirmation of the obtained results. The experiments were 
conducted on a previously developed experimental cavitation 
apparatus with a submerged nozzle [Pogrebjak 2016, Dyadyura 
2017b, Hovorun 2017, Sukhodub 2018]. 
In first part of experiments (Fig. 9) the cylindrical cavitation nozzle 
was compared to the new nozzle based on it. Cavitation intensity 
was estimated by the value of the sensor signal according to [Cui 
2019, Flegner 2019, Korneev 2020, Zhang 2021]. 
Fig. 9 shows that cavitation intensity in the new nozzle is much 
higher than in the basic nozzle in all the study area. As the fluid 
velocity increases, the gap between the nozzles increases as well. 
At a speed of 45 m/s cavitation in the new nozzle is three times 
more intensive than in the basic one. Also, in new nozzle 
threshold of cavitation occurs earlier. 

 

Figure 9. Intensity of cavitation in cylindrical nozzle and new nozzle based 
on it: 1 – new nozzle; 2 – cylindrical nozzle 

 

Figure 10. Intensity of cavitation in Venturi nozzle and new nozzle based 

on it: 1 – new nozzle; 2 – basic Venturi nozzle 

When comparing the new nozzle and the Venturi nozzle (fig. 10), 
it can be seen that the new nozzle is more efficient than the basic 
nozzle, but in this case the gap between them is not so significant. 
As the fluid velocity increases, the gap between the nozzles 
increases as well. At a speed of 50 m/s, the new nozzle is about 
1.5 times more efficient than the basic one. The lower efficiency 
gain is explained by the fact that the introduction of the 
expansion chamber adversely affects the cavitation generation 
zone at the beginning of the diffuser. To increase the intensity of 
cavitation, it is necessary to perform a multifactor optimization 
[Straka 2018] of design of this nozzle, which is a separate topic 
for research. 



 
MM SCIENCE JOURNAL I 2022 I NOVEMBER 

6023 
 

4. CONCLUSIONS 

The presented new cavitation nozzle with expansion chamber 
allows to increase the intensity of cavitation in a few times 
without additional energy costs. For this a slight nozzle design 
modification is needed.  
The idea, laid in the presented cavitation nozzle, can also be 
applied to other types of cavitation nozzles and devices to 
increase the intensity of cavitation. 
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