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Abstract 

Accuracy is one of the most important feature of a machine tool. Being able to estimate the overall 
accuracy of a machine tool represented by the total volumetric error can be a huge advantage in the 
design process. This paper provides overview of methods used for geometric error transfer modeling and 
volumetric error modeling. An error transfer rigid body model is derived and after that, a random linear 
guideway straightness error profile generator is proposed. This allows to simulate a movement axis with 
random straightness errors of rails and computed geometric errors of an assembled axis. Volumetric error 
of a 3-axis machine tool is then modeled using its kinematic scheme and homogenous transformation 
matrices with 21 kinematic errors. Using simulated axes as input to the volumetric model, an entire 
machine tool can be simulated. From that, the total volumetric error can be obtained and a Monte Carlo 
simulation carried out. This allows to analyze statistics of the total volumetric error and with slight input 
changes (rail straightness tolerance), a sensitivity analysis can be performed to determine the most 
influential errors in the machine tool. 
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1 INTRODUCTION 

Machine tool accuracy is a one of the most important 
feature of machine tools. Current industry demands 
increasingly higher accuracy, and machine tool producers 
need to deliver this. The accuracy of machine tool has 
multiple contributing factors [Schwenke et al. 2008]: 

 Geometric accuracy 

 Thermal expansion errors 

 Static and dynamic compliance 

 Control errors 

This paper focuses on geometric accuracy of machine 
tools, thus regarding accuracy under no load or quasistatic 
machining conditions. 

Achieving higher accuracy through tight tolerances on 
structural parts and through very strict assembly 
requirements is very expensive and uneconomical. This is 
the main motivation for implementation of the error 
budgeting method, where the aim is to control the total error 
of a system at the design stage by analyzing and balancing 
error contributions from individual subsystems. [Donaldson 
1980] 

Error budgeting of first level studies the error field effect of 
basic elements, e.g. a guideway. This means optimizing 
individual rail straightness errors to achieve higher overall 
axis accuracy and service life of bearings. Error budgeting 
of second level then studies an error field of multiaxis 
systems consisting of basic elements, optimizing individual 
axis accuracy or machine structure to achieve a better 
overall volumetric accuracy [Treib 1987]. 

Some research papers presented the effect of individual 
straightness errors of rails on resulting straightness of axis 
[Majda 2012], [Rahmani 2015], [Ni 2019] [Tong 2020] and 
thus contributed to first level error budgeting knowledge. 
Some other authors also studied and used the modeling of 
volumetric errors [Treib 1987], [Kiridena 1993], [Dang 2015] 
using homogenous transformation matrices [Stejskal 1996] 
for purposes of second level error budgeting optimization. 
The lesser common way of modeling and computing 
volumetric errors is screw theory [Liu 2018], [Zhong 2019]. 

In this paper, the first and second level error budgeting are 
combined to achieve an increase in overall volumetric 
accuracy through optimizing straightness tolerances of 
linear rails, and thanks to recent research [Zhong et al. 
2019], consequently the straightness tolerances of linear 
rail mounting surfaces. Zhong’s experiments have shown 
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that the linear rail, when mounted properly, will almost 
perfectly adopt the straightness profile of its mounting 
surface. A force-deflection geometric error model of a 4-
carriage moving table is used together with HTM to model 
the resultant volumetric error.  

To be able to predict the volumetric error and to optimize 
the tolerances, a huge set of straightness error profiles is 
needed. No measurement can supply this amount of data, 
so a random straightness error profile generator is derived 
and used. Some research has been done on the character 
of error profiles [Ekinci 2007], [Qi 2016], [Fan 2018] and it 
is being generalized as a sine curve. This however is not 
very accurate and thus an error profile character is 
described.  

Another factor to consider is the probability distribution of 
straightness given a tolerance. [Treib 1987] uses a normal 
distribution for individual straightness errors, [Shen 1993] 
uses a uniform distribution. [Elmaraghy 2018] is however a 
much more recent source and recommends using a Rice 
distribution, or a noncentral chi distribution. However, 
thanks to a set of own measured data of C-frame machine 
linear rail straightness errors, a beta distribution is 
proposed.  

Thanks to the robust random error profile generator, the 
entire error budgeting model can be used for Monte Carlo 
simulation and thus overall volumetric accuracy can be 
analyzed and optimized, based on tolerances of individual 
structural parts. This similar goal has been described 
[Wu 2020], but Wu et al. took the liberty of generalizing all 
machines’ rail straightness curve as a sine curve at the limit 
of tolerance, and also did a very basic calculation of axis 
geometric errors given the rail’s straightness. This paper is 
thus more thorough in modeling and the stochastic 
approach results in more results and information. The 
simulation approach is presented only. The accuracy model 
of a three-axis milling machine is presented in the section 
2. The model is used in section 3 for analyze of key design 
parameters influencing the machine tool final accuracy. 
Discussion of results is presented in section 4. 

2 BUILDING THE SIMULATION MODEL 

2.1 Random straightness error profile generator 

The following machine tool accuracy model uses as an 
input the movable axis rail straightness error profile for 
calculation of the TCP errors. Thus, the first proposed 
model of this paper is the random straightness error profile 
generator – a function that generates data for further use in 
the model, substituting physical measurements of 
straightness error. To build such generator, samples of 
measured data need to be examined (see Fig. 1 for 
reference) and the character of straightness error profiles 
described. These error profiles vastly differ according to 
machine type and size – the generator built in this paper 
focuses on mid-size C-frame vertical milling machines and 
would need adjustment for other types of machine tools.  

 

Fig. 1: An example of a linear rail straightness profile. 

The character and properties of the linear rail straightness 
profile can be described as such: 

 

 Starts and ends with a zero error (adjusted straightness) 

 The profile is scalable in both directions 

 An error change frequency can be observed 

 The rate of change has its bounds 

Beta distribution of straightness value given a tolerance is 
used to generate the value for the profile. Thanks to a set 
of own measured data of C-frame machine linear rail 
straightness errors, a beta distribution with coefficients α=6 
and β=2 and limits between 0 and tolerance value is 
proposed. This distribution and its coefficients were verified 
using a chi-squared test. Inputs to the function are as 
follows: 

 Length of rail 

 Straightness tolerance 

 Error period 

 Error multiplier 

 Beta distribution parameters 

 Output data resolution (simulation step) 

See Fig. 2 for explanation of terms. 

 

Fig. 2: Explanation of some inputs of the function. 

This generator works by first randomly generating a number 
between -1 and 1 from a uniform distribution, and then for 
every other point after the error period it adds another 
random number from the uniform distribution, but this time 
multiplied by the error multiplier. If at any point the result is 
outside of the boundary (from -1 to 1), it sets the point to be 
equal to the boundary. After generating these initial points, 
a cubic curve is fitted through the points and adjusted, so it 
begins and ends at zero. Then, the entire curve is multiplied 
by a random number from the tolerance beta distribution 
and output points with desired resolution generated. 

 

Fig. 3: An example of a generated straightness error 
profile. 

In Fig. 3, an example of a randomly generated straightness 
error profile is shown. This was generated using a 1250 mm 
long rail with a straightness tolerance of 0,03 mm. Error 
period and error multiplier were set to 150 mm and 0,65 
respectively. These parameters are kept for further use in 
the model. 
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2.2 Deflection model of a 4-carriage table  

A 4-carriage table is example of a basic structural group of 
the machine tool. Two pairs of carriages follow two rails of 
the linear guideways. The model enables to predict final 
movement errors in the center of the table. With a given 
deviation from the perfect straightness at each carriage, the 
total deflection of the center point of the table can be 
determined, with a set of boundary conditions. These are: 

 Rigid structural parts 

 Linear deformation behavior of carriages 

 Small deformations and angle errors 

 Stiffness center of carriages as a point of substitution 

For the purpose of this model, linear rail carriages are 
substituted with lateral and normal springs, each with its 
respective stiffness kzi and kyi (Fig. 4). 

 

Fig. 4. Carriage to spring substitution. 

Indexing of rails and carriages and table dimensions are 
determined by Fig. 5 and straightness deviation 
nomenclature can be seen in Fig. 6. 

 

Fig. 5: Indexing of rails and carriages, table dimensions. 

 

Fig. 6: Straightness deviation nomenclature on example 
of X linear axis. 

A rigid mechanical model was derived, using deviations of 
each rail at the carriage and carriage stiffness as input and 
outputting resultant deviation of the carriages, deviation of 
the center point and angle errors. First, internal forces of 
substitute springs Fzi and Fyi are calculated using matrix 
equations (3) and (4). 

Then, individual carriage resultant deflection zi and yi are 

calculated using equation (1). Center point deflection is 
then just a simple average of individual corner deflections. 

𝑧𝑖 = 𝑑𝑧𝑖 +
𝐹𝑧𝑖

𝑘𝑧𝑖
;     𝑦𝑖 = 𝑑𝑦𝑖 +

𝐹𝑦𝑖

𝑘𝑦𝑖
 (1)  

With this computed, angle errors can also be calculated (2). 

𝑟𝑜𝑙𝑙 =
𝑧4 − 𝑧1

𝑎
; 𝑝𝑖𝑡𝑐ℎ =

𝑧2 − 𝑧1

𝑏
; 𝑦𝑎𝑤 =

𝑦1 − 𝑦2

𝑏
 (2)  

This model can be fed either measured data, or data 
generated with the random straightness error profile 
generator from chapter 2.1, resulting in a randomly 
generated machine axis. 

2.3 Calculating the total volumetric error of a 3 axis 
C frame machine tool 

This section describes enhancing of the previously 
presented model to the whole machine tool structure. With 
either computed or measured error components of all linear 
axes, the total volumetric error can be calculated using 
homogenous transformation matrices (HTM) and the 
kinematic model of the machine tool. The simplified 
kinematic scheme of the structure and its dimensions are in 
Fig. 7. HTM is a widely used method for computing the 
volumetric error amongst most authors.  

 

 

Fig. 7: Simplified mechanics of a midsize C frame machine 
tool. 
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 (4)  

The entire structure of the machine tool is modeled in two 
directions towards the TCP – from the origin O through the 
workpiece and through the tool. Translational volumetric 
errors are calculated as a difference between an ideal 
structure transformation and a transformation with 
individual axis error components introduced in their 
respective points. (5) is an example of a transformation 
matrix with all error components of an X axis in accordance 
with ISO 230-1. 

𝑻𝐸𝑋 = [

1 −𝐸𝐶𝑋 𝐸𝐵𝑋 𝐸𝑋𝑋
𝐸𝐶𝑋 1 −𝐸𝐴𝑋 𝐸𝑌𝑋

−𝐸𝐵𝑋 𝐸𝐴𝑋 1 𝐸𝑍𝑋
0 0 0 1

] (5)  

The transformation itself is trivial, the resultant volumetric 
error calculation is, as mentioned, a difference between the 
ideal and error-filled transformation. To get the relative 
translational volumetric error with respect to the workpiece 
origin, the equation (6) is used, where the initial volumetric 
error in the workpiece coordinate system is subtracted. 

(𝑟0𝑇𝑇𝐶𝑃
∗ − 𝑟0𝑇𝑇𝐶𝑃) + (𝑟0𝑊𝑇𝐶𝑃

∗ − 𝑟0𝑊𝑇𝐶𝑃) − 𝐸𝑣𝑜𝑙𝑇
0 = [

𝐸𝑋

𝐸𝑌

𝐸𝑍

1

] (6)  

Rotational volumetric errors are a simple sum of individual 
rotational errors. 

The highest Euclidean distance of the volumetric error (7) 
in the machine’s working area can serve to represent its 
total accuracy, when comparing machine tools. 

‖𝐸𝑣𝑜𝑙𝑇‖ = √𝐸𝑋
2 + 𝐸𝑌

2 + 𝐸𝑍
2 (7)  

The values of individual error components can be either 
obtained by measurement or by previous models. 
Randomly generating squareness errors and using the 
random straightness error profile generator and deflection 
model, an entire machine tool error description can be 
obtained, with random errors. 

Volumetric errors can be visualized with a 3D map, where 
the total Euclidean distance deforms a section plane of the 
machine’s working area. Pictured in Fig. 8 is an example of 
a volumetric accuracy 3D map of a machine tool with errors 
generated by previous models, with straightness tolerances 
on all axes od 0,03 mm, positioning accuracy of 0,01 mm 
and maximum squareness error of 40 µm /m. 

 

Fig. 8: An example of a volumetric accuracy 3D map. 

This field of volumetric errors can be very useful for 
selecting the optimal area of machining. Calculating the 
maximal local volumetric error for all possible machining 
areas and selecting the one with the smallest total error is 
a simple operation, but it can improve the machining 
accuracy by up to 80%. 

3 MONTE CARLO SIMULATION AND ANALYSIS 
OF VOLUMETRIC ERROR 

3.1 Overall volumetric accuracy and sensitivity 
analysis 

With the entire simulation model built, a Monte Carlo 
simulation can be carried out, stochastic estimating the total 
volumetric accuracy of the machine tool given its individual 
rail straightness tolerances.  

 

Fig. 9: Maximal volumetric error histogram. 
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A single output variable was selected – the highest total 
volumetric error in the working area of the machine tool – 
and with 50 000 simulation samples the resultant probability 
distribution was computed (Fig. 9). Straightness tolerances 
were set at 0,03 mm on all axis in both horizontal and 
vertical directions. Maximal squareness error was set to 
40 µm/m and a positioning error was also generated, with a 
maximal error of 0,01 mm. With a 3σ rule (95%), it can be 
estimated, that a machine of described mechanics and 
tolerances should be working with a maximal volumetric 
error of 0,11 mm at most. 

Thanks to this simulation model, input variables can be 
tweaked and the effect on the resultant volumetric error 
observed. This has been done for the straightness 
tolerances of rails one at a time. The tolerances used are 
{0,005 mm; 0,015 mm; 0,03 mm; 0,045 mm; 0,06 mm}. 
Each change was simulated with 50 000 samples and the 
90th percentile of the maximal volumetric error was 
recorded. In total, 30 different Monte Carlo simulations were 
performed. In these simulations, the squareness error 
influence was suppressed. 

 

Fig. 10: Volumetric error relation to vertical straightness 
tolerance of Y axis rails. 

When only adjusting a single straightness tolerance, the 
relationship between the tolerance and the resulting 
volumetric accuracy appears to be quadratic (Fig. 10). To 
understandably compare individual influences, multiple 
linear regression was performed and coefficients of 
significance for individual tolerances were obtained (Tab.  
1, VtX = vertical straightness tolerance on X axis rails, etc.). 

Tab.  1: MLR coefficients of significance 

VtX HtX VtY HtY VtZ HtZ 

1,13 0,16 1,02 0,07 0,64 0,20 

 

Comparing the individual coefficients, it can be observed 
that the most weight lies upon the vertical straightness 
tolerance of X axis rails. Generally, it seems that the 
horizontal straightness tolerances are much less significant 
to overall accuracy. 

3.2 Optimal machining area analysis 

Other use case for this type of simulation is finding the 
optimal area for machining in a machine tool. As described, 
the optimal area for machining can be found. The origin of 
this area can be saved as a point in space and used in a 3D 
histogram to show which point or area is most likely to result 
in the most accurate volumetric machining. 

For this simulation, the initial error tolerances were used 
together with a machining area of 200x100x50 mm. Using 
50 000 samples again, Fig. 11 shows the resultant 3D 
histogram of optimal machining areas – the point with the 
most occurrences is most likely to be evaluated as the 
origin of an optimal area.  

Another visualization method is viewing the average local 
volumetric error for all possible origins of machining areas 
(see Fig. 12).  

In both cases, it appears that it is generally better to place 
workpieces near the table and thus achieving the lowest 
local volumetric error. 

 

Fig. 11: 3D histogram of optimal machining area origin 
occurrences. 

 

Fig. 12: Average local volumetric error of machining 
subareas. 

The point with the most occurrences as the optimal origin 
of machining area and concurrently the point of origin with 
the lowest average local volumetric error was X550 Y250 
Z-550, which is the point on the right end of X axis, middle 
of Y axis and bottom of Z axis. 

4 DISCUSSION 

A Monte Carlo simulation model of total volumetric 
accuracy was derived. The total model contains 3 partial 
models – random straightness error profile generator, a 
rigid deflection model of a 4-carriage table and an HTM 
kinematic model for volumetric error calculation. Results of 
sensitivity analysis in Tab.  1 show a very dominant 
influence of vertical straightness errors on the overall 
accuracy for the modelled machine and boundary 
conditions. This remains to be confirmed by measurement, 
but if confirmed, it would mean that horizontal straightness 
tolerances on structural parts of midsize C-frame machine 
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tools could be looser by an order of a magnitude without the 
machine showing a significant decrease of accuracy and 
thus would allow for cheaper manufacture. Because of the 
quadratic relation from Fig. 10, a multiple quadratic 
regression could be carried out for the simulated data and 
a one-equation relationship between individual rail 
straightness tolerances and resulting volumetric accuracy 
obtained.   

During the volumetric error modelling stage, a calculation of 
optimal machining area was derived. This allows to find an 
optimal subspace in the machine with the lowest maximal 
local volumetric error and thus achieve the highest possible 
accuracy while machining. This is not only usable while 
using measured data of a real machine tool, but can also 
be analysed with a Monte Carlo simulation. The result is 
being able to define a point of origin of the highest accuracy 
for a given machining area of a workpiece. This was done 
with two different approaches – a 3D histogram of points 
being determined as the origin of an optimal machining area 
and a map of the machine’s workspace with displayed 
average local volumetric error for each possible workpiece 
origin. In both cases, the same origin point arose as the 
either most occurrent or most accurate – X550 Y250 Z-550 
– or the point on the right side of X axis, in the middle of Y 
axis and at the bottom of Z axis. Generally speaking, it is 
best to place workpieces as near the table as possible to 
achieve highest machining accuracy.  

5 SUMMARY 

This paper proposed a new method for Monte Carlo 
simulation of a machine tool’s accuracy. This method will 
benefit new approaches to error budgeting in machine tools 
thanks to volumetric error estimation and tolerance 
sensitivity analysis. The stochastic approach allows to 
predict machine tool volumetric accuracy based on 
tolerances of structural parts and thus influence the 
machine’s accuracy in the design phase. An example of 
input tolerances and parameters was given, resulting in an 
estimation of a basic midsize C-frame 3 axis milling 
machine’s overall volumetric accuracy. The sensitivity 
analysis has shown that vertical straightness tolerances on 
rail mounting surfaces are of greater significance than 
horizontal straightness tolerances. Other type of accuracy 
analysis was finding the optimal workpiece origin with the 
smallest local volumetric error. Two approaches were used 
with the same general result – it is best to place workpieces 
near the table, in case of the modelled machine. The further 
research would benefit from verification of the force 
deflection model or its further deriving with compliant 
structural parts in mind.  
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