LOW-FREQUENCY CHATTER SUPPRESSION USING TUNED MASS DAMPER IN ROBOTIC MILLING

Abstract

Low-frequency chatter severely limits robotic milling efficiency. In this paper, tuned mass dampers (TMDs) are introduced to suppress low-frequency chatter based on robotic modal directionality. A TMD model with mounting angle is established, and the suppression effect of TMD on the robotic low-frequency dynamic compliance with different mounting directions is analyzed together with experiments. Then, low-frequency chatter is further suppressed by suppressing side-frequency dynamic compliance. The milling experiments show that the TMD can significantly suppress low-frequency chatter and improve cutting amount, and a better effect can be achieved when TMDs act at both the low-frequency mode and side frequencies.

Recommended articles

DIGITAL GEOMETRY GENERATION OF HIGH PRECISION BROACHING TOOL CUTTING EDGES THROUGH IMAGE PROCESSING ALGORITHM

Z. Dombovari, Z. Gabos, D. Plakhotnik
Keywords: broaching | High precision machining | Big data | image processing

MACHINE LEARNING BASED IDENTIFICATION AND PRIORITIZATION OF ELECTRICAL CONSUMERS FOR ENERGY MONITORING

M. Weigold, A. Stobert, B. Ioshchikhes
Keywords: Energy transparency | computer vision | decision support