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Abstract 

The development of part quality virtual sensors requires knowledge and observability of cutting conditions 
and in particular tool wear as tool are consumables. This paper presents an unsupervised anomalies 
detection approach to assess tool wear from standard machine load sensors in order to evaluate a non-
quality risk metric. The developed methodology combines physics and business rules with density 
estimators to analyse the behaviour of axes and spindle loads. Industrial data from an automotive 
production line are used to illustrate the methodology application. 
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1 INTRODUCTION 

Zero-Defect Manufacturing (ZDM) is one of the challenges 
of Industry 4.0 dealing with both quality improvement and 
waste reduction. The industry is facing an unprecedented 
rise in costs, forcing a revolution throughout the 
manufacturing process to be as flexible as possible while 
maintaining competitive prices [Powell 2022]. Particularly in 
automotive production, where the emergence of electric 
vehicles is calling for a reallocation of machining lines. 
Indeed, some studies report that an electric vehicle reduces 
machining line requirements by 30-50%. Predictive quality 
is one of the levers for improving production line 
performance and moving towards ZDM. 

Predictive quality analytics can be defined as an automated 
analysis of process, i.e., machining, incoming data in order 
to identify any parameter’s drift as early as possible and 
thus to minimize or even to avoid losses. The work 
presented in this paper deals with an unsupervised 
business approach to evaluate the risk, i.e., a probability, 
that the machined part will present non-quality after a 
specific operation with an application to an automotive 
production line. 

2 PREDICTIVE QUALITY 

From business point of view, predictive quality means to 
find a link between process measurement during machining 
and geometrical characteristic of the part. For instance, in 
the case of a simple hole, find a link between spindle or 
axes speed, load, vibration and hole metric such as 
diameter or eccentricity. From data analysis point of view, 
the objective is to find a correlation model between the 
dynamic of the process collected time series and its 
geometrical characteristics. The development of this model 

can be viewed as supervised or unsupervised learning 
problem. 

In the supervised case, very often, a regression model is fit 
to predict the value of the characteristics using features 
extracted from process time series. Then, at the end of 
production of each part the model is applied on the process 
measurements to estimate geometrical characteristics and 
thus to evaluate if the quality of the part is correct. This 
approach assumes that quality data is available and 
perfectly synchronized with process data. Also, this 
approach needs to have a representative training dataset, 
i.e., a dataset covering a large operational machining 
condition and particularly tool wear, especially when the 
control of the parts is done by sampling. 

In the unsupervised case, quality data is not necessary to 
create the model. Indeed, first phase of this kind of 
approach consists in detecting anomalies in time series 
dynamics. A dataset, only composed of process data, is 
used to train a model able to learn correlation between 
extracted features, such as density estimator models as in 
[Hasilovà 2019]. If most of dataset content correspond to 
good quality part, the model learns the dynamic 
corresponding and thus the good part production pattern. 

Automotive case is considered as an unsupervised case. 
Indeed, the machine can produce around 500 parts per day 
and only 3 parts are geometrically controlled per day. Under 
these conditions it is thus difficult to have a representative 
and consistent dataset for supervised approaches. 

Developed methodology is based on cutting conditions' 
impact analysis assuming that these impacts should always 
be the same as far as machined part remains the same. To 
estimate cutting conditions’ impact it is first necessary to 
recognize in the time series the process where tools cut the 
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raw part. Then, impacts can be computed and modelized to 
finally use anomaly detection techniques. 

Whatever the applied machine learning approach, features 
used as model inputs are key elements for the success of 
the methodology. Regardless of the machine learning 
approach employed, the chosen features play a critical role 
in the success of the methodology. Ideally, these features 
should represent causal or consequential phenomena of 
part quality metrics, leading to faster algorithm training and 
reduced data requirements. 

Previous works [Armendia 2019, Peysson 2019a] have 
shown that using both business and physics concepts to 
preprocess data and create a first level of features called 
“Behaviours Indicators” allow to link process extracted 
feature drift with event on the production such as 
observation of streak in machined hole or tool breakage.  

 

Fig. 1: Feature trend before streak detection in Automotive  

Observation of drifts means that these phenomena could 
be at least early detected and anticipated and under some 
conditions predicted in the future. Figure 1 depicts the trend 
of a torque-based feature trend. Change on trend is clearly 
recognizable one day before the streak detection, meaning 
that the risk of non-quality has increased. 

The common thread of most of part quality prediction 
approach is the monitoring of cutting conditions resulting 
from the contact of the tool and the part. Empirical surface 
quality prediction models have been investigated in further 
research [Moreira 2019] and remind that this complex 
phenomenon depends on a large set of parameters such as 
tool wear [Kolar 2022], tool mechanical characteristics, 
lubrification, raw material characteristics of the part, etc. 
During machining, cutting conditions must be supported by 
various machine components as spindle and axes. These 
actuators must therefore compensate the cutting conditions 
to precisely respect the orders of the Numerical Control 
(NC). 

3 AUTOMOTIVE USE CASE  

The case study is focused on the combustion chamber 
within the cylinder head. This is a high productivity case 
study with a high number of parts produced per year. 
Produced part, shown in figure 2, correspond to a 4-cylinder 
engine with two lines of 8 valves: admission line (in purple) 
and exhaust line (in green). Machining of a valve seat is a 
complex process due to its concave shape and uses 
specific tools. Two versions of the part are produced on the 
production line. 

Production cycle time is around 156 seconds for the version 
and 170 seconds for the other one. Machine operates 24 
hours per day, 7 days per week. 

Data collection is based on S7COMM protocol from 
Siemens. The numerical command - 840D Solution Line of 
the machine is connected to the factory network using NC 
port X130. As depicted on Figure 3, “CASIP® software 
suite” is installed on a computer which is also connected to 

the factory network and can collect variables from NC and 
Programmable logic controller (PLC) of the machine. 

 

Fig. 2: Produced part details 

Around 180 times series are collected with a sample rate 
between 100Hz and 10Hz. 70 time series are “Analogic” 
time series meaning that they contain measurements like 
axis’ torque or position. Other time series are “Boolean” and 
contain status information like “machine in automatic 
mode”, alarms. Collected process are daily transferred to a 
cloud platform hosting KASEM® application. 

 

Fig. 3: Data collection architecture. 

Whereas many data are collected, the methodology only 
requires axis speed and load data. Hence it is possible to 
extend this use case to all the NC (Fanuc, Heidenhain, etc.) 
that have the ability to deliver such information at an 
equivalent sample rate. 

In this paper, the analyses are conducted utilizing the 
PREDICT software suite as a foundation. Nonetheless, it is 
imperative to acknowledge that the proposed methodology 
remains entirely autonomous from these particular tools. 

4 METHODOLOGY 

In numerical machining business, tasks are controlled with 
a program run on a computer and most of the time these 
tasks are repetitive. Thus, a machining program can be 
seen as a pattern that is repeated for each part. This pattern 
being composed of sub-patterns like M06 function that 
represents tool change, acceleration or deceleration phase 
of the spindle. All these patterns / sub-patterns are 
interesting time periods to evaluate and analyse machine 
dynamics. Indeed, analysing system behaviours are always 
in the same machine conditions, i.e., patterns or sub-
patterns, allow to have a robust and reliable analysis 
because of the known machine conditions.  

Different operating conditions can be collected directly from 
the machine numerical command. If it is not the case, they 
should be inferred from the raw sensor’s measurements 
such as the axes positions. First solution requires a 
knowledge of the location of the information in the machine, 
but many of them that are needed to create machine 
condition are not still normalized in G-Code primary or 
auxiliary functions. Frequently, manufacturers tend to 
modify memory addresses for each machine version they 
produce, requiring documentation and PLC program 
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analysis to find operating conditions. In addition, this type 
of information is not always shared in the connected “4.0 
machines” of the future. Work necessary to collect these 
information’s cannot be done and maintained for a large-
scale deployment. For these aforementioned reasons, a 
second solution consisting in inferring operating conditions 
from machine sensors’ data like axes position and spindle 
speed is required.  

Due to the highly repetitive operations in numerical 
machining business, analysing system behaviours in the 
same machine conditions, i.e., patterns or sub-patterns, 
allow to have a robust and reliable analysis. Hence machine 
conditions must be inferred from the raw sensors’ 
measurements. The operating condition computation 
problem then relies on a pattern extraction and labelling 
problem as described in figure 4. The figure 4 upper section 
specifies the use of business knowledge in the selection 
and annotation of training references, i.e. specific 
machining phases. The lower section delineates the 
process of real-time tool behaviour through the trained 
contextual pipeline. Finally, the assessment of non-quality 
risk is manifested through the residue between live pipeline 
result and the expectations of the contextual model. 

Using business knowledge to drive model and pipeline 
building ensure a “quick” learning time that is more 
compliant with industrial activities. 

 

Fig. 4: Business approach for non-quality risk evaluation. 

4.1 Contextualization 

Given our objective of identifying business-defined 
patterns, our attention is directed towards the field of 
pattern recognition.. A pattern is a timeseries of interest, 
potentially multi-dimensional. Given a query and a 
reference timeseries, our goal is to find all the occurrences 
of the reference (pattern) in the query. To find the most 
appropriate algorithm, the following elements must be 
considered: 

 The number of observations needed to train the 
algorithm must be as low as possible given that data 
labelling is a highly time-consuming task. 

 A query may contain from one to several times the 
pattern of interest or no pattern at all. If present,  
beginning and end of each found pattern have to be 
returned. 

 The size of the query can be significantly larger than the 
size of the reference pattern being searched. 

The timeseries classification (TSC) field provided many 
competitive algorithms these recent years but many, if not 
all, of the previous requirements are missing mainly due to: 
a fixed and limited timeseries’ window size, the presence of 
a single pattern in the query, and the need of dozens or 
hundreds of samples for training [Bagnall 2016, Ruiz 2021]. 
In addition to this, a crucial assumption is that the pattern 
has already been found, which, however, poses a 
challenging and frequent problem in the industry. To 
address this, a solution based on the Dynamic Time 
Warping have been developed. The next two paragraphs 

will address the algorithm technical details and its 
application for our use case. 

Dynamic Time Warping 

Dynamic Time Warping (DTW) is an algorithm that 
measures the similarity between two timeseries which may 
vary in timing [Sakoe 1978]. It creates a matrix of the size 
of the reference by the query where every possible warping 
between the two timeseries is a path through the matrix (cf. 
Fig. 5 5). The path that minimizes the total distance in the 

matrix is the final distance returned by the algorithm. By 
releasing the constraints that assign the begin and end of 
the reference with the begin and end of the query, it is 
possible to locate the start and end timestamps of the 
searched pattern in the query. Hence the base DTW with 
released constrains act as a search pattern algorithm and 
has the advantage to perform with a unique labelled 
reference. Its popularity leads to more optimized 
implementations to fit large scale and real-time problems 
[Rakthanmanon 2012] so it can find the best match given a 
large query. 

 

Fig. 5: DTW based approach for Program pattern 
recognition. The top-left figure represents the inner matrix 
and the warping path (in red) between a given reference 

and a query. The main three step of our DTW-based 
algorithm are then explained: iterative search, stopping 

criteria and sub-pattern labelling. 

The developed methodology tunes and extends the base 
algorithm to find not only the best match but all the 
instances of the reference with an iterative process (e.g., 
first step in figure 5). The query search makes use of smart 
rules to ignore sections where the pattern cannot be 
present. To prevent false-positive match, a stopping 
criterion is defined by a clustering method (e.g., second 
step in figure 5) based on the returned DTW distance of 
each pattern occurrence found in the query. Thus, it 
enables to bypass the use of a threshold and hence to be 
generic. 

Moreover, the method is able to assign to each returned 
pattern a sub-pattern without any added computational cost 
by making use of the inner matrix produced by the DTW 
algorithm (e.g., third step in figure 5). The sub-pattern 
previously defined on the reference is warped to each 
occurrence of the pattern in the query. Hence it is possible 
to define and look for multiple sub-patterns of a given 
reference by only running once the pattern recognition 
algorithm. 

Application 

Pattern recognition algorithm have been extended and 
used to identify cutting phases, i.e., phases where the tool 
is in contact with the part. This application required at first 
to manually label one occurrence of the two programs used 
in the production line. Figure 6 shows an example of 
labelling for a specific program and a specific tool.  

Left part of the figure represents machine tool's X, Y, Z and 
A-axis positions during one occurrence of the program 
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execution. Red and blue plots clearly show the admission 
and exhaust eight valves. Right part of the figure shows an 
example of labelling made for the first line of valves with tool 
40. In this case, Z position have been used to characterize 
tool cutting condition. 

In addition to the cutting phase recognition, it is also 
necessary to identify the tool replacements. A Tool 
replacement occurs when the current tool reaches its 
maximum number of machined parts. For this purpose, 
DTW-based recognition coupled to a smart algorithm able 
to reconstruct tool life cycle in tool magazine has been 
developed. 

 

Fig. 6: Example of program cutting phase labelling. 

The DTW-based model is used to find a tool replacement 
pattern based on a single predefined reference. To be more 
precise, our interest reside in a single specific sub-pattern 
of the tool replacement. The  algorithm is evaluated to not 
only detect a pattern, but also to find at the same time 
another specific sub-pattern inside the pattern as shown in 
figure 7.  

To validate its precision and robustness, our DTW-based 
model results is compared to our domain expert pattern 
recognition process. To that end a generic evaluation 
algorithm is develop to match each domain expert pattern, 
to the best matching predicted pattern and integrated it in 
our Data Science Toolbox API (figure 4). 

This is a mandatory step as multiple predictions could 
intersect the expert label or vice versa – multiple expert 
labels could intersect a prediction. In a sense, the algorithm 
is given an awareness of the surrounding expert and 
predicted label to make the best matches from the whole 
dataset perspective. The evaluation result is relatively close 
to a binary classification evaluation. Here the best matching 
pattern is marked as a True Positive (TP) and the other 
predictions intersecting the expert label are marked as 
False Positive (FP). If an expert label is unmatched, this is 
a False Negative (FN). The Jaccard Index can be defined 
as: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 (1) 

To measure the success of finding the correct pattern. Its 
ranges in [0,1] with one meaning all patterns were founds 
with no error. The score obtained is 0.913, with 5 false 
discoveries and 41 not discovered on a total of 531 
patterns, which demonstrate the solid performance of the 
model. Most of the undiscovered patterns were extreme 
cases where the change of tool lasted several minutes 
instead of the expected few seconds. 

On top of this “search” quality metric, the model should be 
able to finely detect the start and the end of each reference 
pattern. To that end the Jaccard Distance usually used in 
the field of object detection has been adapted to our 
timeseries pattern recognition use case, such as: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑖𝑚𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑖𝑚𝑒 𝑈𝑛𝑖𝑜𝑛
 (2) 

By design its results ranges in [0,1] with one being a perfect 
match such that the beginning/ending of the reference and 
predicted pattern are the same. On average our DTW-
based model score at 0.930 demonstrating an excellent 
ability to match the start and end of the searched pattern. 
As a conclusion, our DTW-based algorithm enables us to 
successfully define sub-patterns on the discovered 
patterns, thus bringing a higher conditioning and analysis 
capacity. 

 

Fig. 7: KASEM® powered visualization of repeated change 
of tools - in black. The upper part represents the position 

of the X, Y and Z axes on the machine tool. The lower part 
represents the sub-pattern presence - in blue the expert 

label, in red our DTW-based model results. 

Figure 8 depicts identified tool per program type associated 
to their respective magazine position. At each tool change 
during part machining, tool position in the magazine is 
saved to create a map of the magazine. 

Map of the magazine and tool replacements recognition 
allows to identify which tool is replaced by operator, an 
essential information to study tool wear evolution and 
develop cutting behaviours indicators. 

4.2 Anomaly detection 

Kernel Density Estimator 

Kernel Density Estimator (KDE) is a non-parametric method 
to estimate the underlying probability function of a dataset. 
When fitted, the KDE output a log-density that an 
observation belongs to the learned distribution. Two 
properties are to consider for the KDE configuration: the 
kernel choice, and the bandwidth. Although a large variety 
of kernels are available, the normal kernel, i.e., the standard 
normal density function, is the most convenient due to its 
mathematical properties. The bandwidth acts as a 
smoothing parameter, controlling the trade-off between 
bias and variance in the result. Best bandwidth value is here 
inferred with least-squared cross-validation as one of the 
methods suggested in [Chen 2017]. 
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Fig. 8: Reconstruction of tool magazine life from process 
data. 

Application 

The goal of cutting behaviours indicators is to provide 
images of effort and vibrations during machining. These 
indicators are computed from load measurements of 
spindle and axes in previously identified cutting phase. 
Quality and representativeness of indicators are closely 
linked to data acquisition quality, identification of cutting 
phase and tool replacements, and computed features from 
load. Indeed, cutting condition and tool kind are key input to 
choose the right feature. 

Using both temporal clustering on process data allow to 
extract features from machine axes and spindle loads. 
These features “contain” both information of cutting effort 
and tool wear as shown in figure 9 for tool 45 from spindle 
point of view. The features analysis shows that similar 
trends are observed in machine axes behaviours. 

 

Fig. 9: Tool 45 wear with colorized replacements from 
Spindle point of view. 

Y-axis represents the spindle load during valve machining. 
Colorized points correspond to the spindle load for each 
valve while a rolling (over 10 parts equivalent to 80 valves) 
median load is plotted in black. Plot has been colorized 
according to identified tool replacement, and x-axis 
represents the number of machined valves with the tool. 
Tool wear is thus clearly identified and each step in the 
trend can be linked to a tool replacement. Also, clusters of 
trends can be visualized with sometimes higher level of 
wear which increase both risks of tool breakage and part 
non-quality. Modelling of nominal tool wear to detect any 
anomaly behaviour in tool wear is thus possible and 
necessary. 

Data modelling approaches have been applied to learn the 
median dynamics of tool wear, especially kernel density 
algorithms, with features extracted from spindle and axes 

value and that represent force and vibration images during 
cutting phases. Inputs of the data modelling algorithms are 
composed by these features for spindle load and Z-axis and 
their derivatives. Tool wear is thus considered by the 
discrete time equation system: 

[
 
 
 
 
𝑆𝑃𝑙𝑓

𝑆𝑃𝑙𝑣

𝑍𝑙𝑓

𝑍𝑙𝑣 ]
 
 
 
 

𝑘+1

= 

[
 
 
 
 
𝑆𝑃𝑙𝑓

𝑆𝑃𝑙𝑣

𝑍𝑙𝑓

𝑍𝑙𝑣 ]
 
 
 
 

𝑘

+

[
 
 
 
 
𝑊𝑆𝑃𝑙𝑓

𝑊𝑆𝑃𝑙𝑣

𝑊𝑍𝑙𝑓

𝑊𝑍𝑙𝑓 ]
 
 
 
 

𝑘

 (3) 

where 𝑙𝑓  and 𝑙𝑣  are respectively force and vibrations 

extracted from motor loads. W is the slope vector and 𝑘 a 

sliding window of part to take into account measurement 
value and time uncertainities. Both instant 𝑘  vectors 

defined the KDE inputs. 

Log-likelihood is output of the kernel density algorithm: low 
values meaning that points do not fit with the learnt 
distribution. From the quality problem, this output is 
considered as a risk of non-quality. Figure 10 shows the 
behaviour of the developed non-quality risk according to 
simulated tool wear trajectory where dark points mean a 
high risk of non-quality. Fault on tool wear is introduced 
during part 40 then the top curve depicts the fault free case 
and the bottom curve the faulty case. 

This metric clearly enables the detection of undesirable 
behaviour considering several features as input. In 
addition,it is robust to the “life” of the tool, i.e., the metric is 
robust when the tool installed on a machine is not new and 
without any knowledge of its past usage. 

 

Fig. 10: Validation of data modelling with simulated tool 
wear. 

5 RESULTS 

5.1 KASEM® 

KASEM® (Knowledge and Advanced Service for E-
Maintenance) is a web platform with a service-oriented 
architecture (SOA), integrating collaborative e-
maintenance, engineering, proactive maintenance, 
decision-making and expertise tools. KASEM® is 
developed, maintained, and improved by PREDICT 
[Peysson 2019b]. 

Functional and dysfunctional analyses are integrated and 
structured in KASEM® knowledge base to describe the 
machine. A systemic approach is being developed to build 
a description of the machine and its components by its 
functions, their consumed or produced flows and to 
anticipate how they could malfunction. The malfunction of 
the system is studied using the HazOp (Hazard and 
Operability) and FMECA (Failure Modes, Effects and 
Criticality Analysis) analyses. 

In addition, the KASEM® platform integrates the following 
services: 
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 Data Visualization gathering all the tools and ways to 
communicate clear and efficient information to the 
users, making complex information more accessible, 
understandable, and usable. 

 Event management gathering all the tools and ways to 
generate events relative to systems’ status (fault 
detection, prognostics, health) and to manage these 
events (validation, cancellation). 

 Analysis and Investigation gathering all the tools and 
ways to analyse and understand events, to explain what 
the causes are (diagnostic) and the consequences 
(prognostic). 

 Knowledge sharing gathering all the ways to create and 
consult system’s documentation and information. 

The results of the developed pipeline have been 
implemented in KASEM®. In addition of presenting the non-
quality risk metric, intermediate steps of the pipeline allow 
to build dashboards on production and tool management 
statistics. 

 

Fig. 11: KASEM® dashboard of production features. 

5.2 Tools life monitoring 

Producing periods are automatically detected and defined 
as spindle rotating with at least one axis moving and the 
machine is in automatic mode. During these periods of 
production, the type of program is identified thanks to tools 
sequences. Programs number 1, 2 and 3 correspond to 
heating programs, whereas programs 6, 7 and 8 are 
different types of produced parts. Figure 11 shows an 
example of dashboard presenting count of produced parts 
by shift and by type of part. 

As seen above, tool replacements are identified inside 
KASEM® and allow the development of specific dashboards 
following tools life, without any additional calculation. The 
dashboard, depicted in figure 13, presents the count of 
replacements and the date of the last replacement for each 
tool. A histogram compares the count of replacements of 
every tool and helps to identify the most critical ones. 
Finally, the number of parts produced with the current tool 
can be compared to the mean count of parts produced 
before replacement and easily estimate the tool age.  

5.3 Non-quality risk 

Non-Quality risk dashboards present link of non-quality risk 
indicators with measurements of quality characteristics. For 
each tool, a list of characteristics influenced by the tool has 
been defined, i.e., the measurement of quality characteristic 
is done directly on a surface machined by the tool. The non-
quality risk is computed from spindle force and vibration 
images which are calculated from spindle load. As can be 
seen on figure 12, the quality characteristic is above 
threshold on the period where non-quality risk is also 
drifting. The main goal here is to link quality measurements 
with non-quality risk based on tool degradation and spindle 
force and vibration images. 

 

Fig. 12: KASEM® dashboard of non-quality risk. 

Figure 14 shows two examples of the non-quality risk metric 
according to a quality characteristic over two distinct 
periods during years 2021 (top image) and 2022 (bottom 
image). Models used, more specifically for anomaly 
detection, have been trained on 2020 data. On the graph: 
black curve is the non-quality risk metric, the magenta one 
is a quality characteristic, red line represents the quality 
pre-alarm threshold defined by the production line 
manager. Quality characteristics are measured directly on 
machined surfaces such as valve seat circularity, location, 
tilt, flatness, valve guide diameter, etc. Note for interpreting 
that quality characteristic is plotted according to date of 
quality control which may be a few hours later than the 
production date, also Y-axis of both graphs are not the 
same. 

Non-quality risk metric clearly shows different trend through 
various tool replacements. Some tool “instance” have very 
low log-density which means that observed cutting 
responses are far from those learned.  

In particular, the image above shows that a low log-density 
is followed by a pre-alarm during quality control. This is 
confirmed by the bottom image in 2022 which also shows 
that precise synchronization is required to enable 
correlation and validation. 

As you can see on Figure 14, when non-quality risk 
indicator (in black) is dropping, quality measurements (in 
pink) are often over the threshold 
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Fig. 13: KASEM® dashboard of tool life (replacements) monitoring without adding new machine or tool sensors. 

 

6 CONCLUSION 

The presented methodology enables to extract machining 
features, mainly from spindle and axes load, that reflect 
cutting conditions and allow to monitor tool wear and tool 
life. The use of an unsupervised AI, from quality data point 
of view, approach enables the detection of anomalies in the 
tool wear trajectory, thus anticipating quality problems on 
the one hand through data analysis and in-depth knowledge 
of cutting tools. These results are obtained without adding 
new sensors to the machine or tools. Initial results show a 
correlation between the non-quality risk indicator and 
quality control sampling. In order to improve the study of 
this correlation, sampling should be made dependent on 
this indicator in the future. 

Current models only take into account a single machining 
operation, whereas generally there is at least one roughing 
and one finishing step, and the behaviour of the latter may 
depend on the behaviour of the former. To take this into 
account, machining data, quality data and traceability data 
need to be properly synchronized. In addition, cutting 
conditions may also depend on other factors such as the 
properties of the cutting fluid or the characteristics of the 
raw material. Both were regarded as invariant in this study 
and will be considered in future work. 
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Fig. 14: KASEM® powered visualization of non-quality risk linked with quality measurement - in black the non-quality risk, 
in pink the quality measurement (in this case the admissible valve seat oscillation 0,05/H1), in red and green quality 

measurement thresholds.

 


