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Abstract 

In many facets of industry, slender workpieces are formed by means of milling processes. These 
workpieces are especially prone to experience harmful chatter vibrations, which limits quality and 
productivity. In this paper, a novel solution is proposed where a robotic arm is used to support the 
workpiece, improving its modal properties and reducing the occurrence of chatter. The paper presents 
some numerical, analytical and limited experimental results for improving the material removal rate using 
the robot assisted milling method for low radial immersion processes, such as finishing operations. 
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1 INTRODUCTION 

An essential limiting factor for the efficiency of 
subtractive manufacturing processes, such as turning or 
milling, is the appearance of chatter vibrations. These 
harmful vibrations are the results of regenerative effects, 
meaning the vibrations during one cut are imprinted on the 
machined surface which then acts as an excitation in the 
next cut [Altintas 2012]. There are many approaches to 
limiting these self-excited oscillations, such as the design of 
complex tool geometries, increasing the stiffness of the 
clamped workpiece and machine tool structure or 
increasing the damping present in the system [Munoa 
2016]. Another approach is the direct force control applied 
to the spindle [Budak 2000]. A new solution to improve the 
chatter resistance of milling processes of slender 
workpieces is to support the workpiece opposite to the 
milling tool using a robotic arm, thus, changing its modal 
behavior. A similar configuration was studied 
experimentally in [Ozturk 2018] and [Sun 2019] and was 
shown to improve productivity. This paper studies the 
potential and the feasibility of this proposed approach with 
analytical predictions in simplified models. 

Here, low radial immersion processes are investigated, 
which are described with the model of highly interrupted 
cutting [Stepan 2005]. The robotic arm is driven using a 
digital P-controller where the effect of digital sampling is 
also considered [Stepan 2001]. First, these two basic 
models are introduced and investigated experimentally. A 
hardware-in-the-loop system that was developed in [Beri 
2020] is used for testing both elementary cases of highly 
interrupted milling and sampled force control. The 
combination of these basic models yields the robot assisted 

milling method, which is shown to greatly improve the 
attainable material removal rate, while avoiding chatter. 

2 MODEL DESCRIPTION 

2.1 Mechanical model 

In this section the mechanical model of the robot assisted 
milling process is discussed. In panel a) of Fig. 1, the sketch 
of such an arrangement can be seen, while panel b) shows 
the equivalent single degree of freedom (DoF) model. We 
assume that the chatter vibrations are related to a single 
vibration mode of the slender workpiece with parameters 
𝑚, 𝑐 and 𝑘, since all other structures are significantly stiffer. 

These modal properties ire considered to be uniform along 
the entire length of the workpiece. The end-effector of the 
robotic arm is executing a sampled 𝑃 control algorithm in 

the 𝑥 direction in order to attenuate the chatter vibrations, 

while it follows the milling tool in the 𝑦 direction with feed 𝑣 

to efficiently counteract the effects of the cutting forces. In 
the following subsections the two building blocks of this 
complex model are discussed: the model of highly 
interrupted cutting and digital force control. 
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Fig. 1: Sketch of robot assisted milling a). Equivalent 
mechanical model b). 

2.2 Highly interrupted cutting 

For low radial immersion milling processes, such as 
finishing operations, the cutter teeth spend a lot more time 
in free flight, as opposed to in contact with the material. 
These short cutting segments are now treated as 
instantaneous impacts resulting in the model of highly 
interrupted cutting [Stepan 2005]. The mechanical model of 
highly interrupted cutting is shown in Fig. 2. The milling tool 
with 𝑍 = 4 straight cutting edges has the tooth-pass time 
𝜏 = 60/𝑛𝑍, where 𝑛 is the spindle speed given in rpm. Each 

tooth-pass is a combination of (1 − 𝜌)𝜏 length of free flight 

and short 𝜌𝜏 length impact-like cutting, where parameter 𝜌 
describes the level of interruption. Since the cutting is 
treated as an instantaneous impact, we can define the 

discrete times 𝑡𝑗 = 𝑗𝜏  and simplify the dynamical system 

into the form (1).  

𝒙(𝑡𝑗+1) = 𝑨𝒙(𝑡𝑗) + 𝑰0,   

  

𝒙(𝑡𝑗) = [
𝑥(𝑡𝑗)

𝑣(𝑡𝑗)
] , 𝑰0 = [

0
𝜌𝜏

𝑚
𝐹0

],     (1) 

where the matrix 𝑨 has entries 

𝑨 = [
𝐴11 𝐴12

𝐴21 𝐴22
],  

 𝐴11 =
𝑒−𝜁𝜔𝑛𝜏

√1−𝜁2
 cos(𝜔𝑑𝜏 − 𝜀),  

𝐴12 =
𝑒−𝜁𝜔𝑛𝜏

𝜔𝑛√1−𝜁2
 sin(𝜔𝑑𝜏),  

𝐴21 =
−𝜔𝑛𝑒−𝜁𝜔𝑛𝜏

√1−𝜁2
 sin(𝜔𝑑𝜏)  

           +
𝜌𝜏

𝑚
𝐾𝑎 [1 −

𝑒−𝜁𝜔𝑛𝜏

√1−𝜁2
cos(𝜔𝑑𝜏 − 𝜀)],  

𝐴22 =
𝑒−𝜁𝜔𝑛𝜏

√1−𝜁2
 [cos(𝜔𝑑𝜏 + 𝜀) −

𝜌𝜏

𝑚𝜔𝑛
𝐾𝑎 sin(𝜔𝑑𝜏)]. (2) 

Note that the natural angular frequency 𝜔𝑛 = √𝑘/𝑚 , 

damping ratio 𝜁 = 𝑐/2𝑚𝜔𝑛 , damped angular natural 

frequency 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 and the phase parameter is 𝜀 =

tan−1(𝜁/√1 − 𝜁2). The cutting forces in this model are in the 

following form during the short cutting 

𝐹(𝑡) = 𝑎𝐾[𝑥(𝑡 − 𝜏) − 𝑥(𝑡)] + 𝐹0,     (3) 

where 𝑎 is the axial depth-of-cut, 𝐾 is the cutting coefficient 

depending on the radial immersion and the material 
properties, while the regenerative term is related to the 
instantaneous chip thickness being dependent on both the 
current position of the workpiece and its position at the 

previous cut. The term 𝐹0  is the force related to steady 

cutting dependent on the radial and axial depth-of-cut, 
nominal chip thickness and material properties. This term 

does not affect system stability. The stability of dynamical 
system (1) is determined by the eigenvalues of matrix 𝑨, 

leading to the stability limits of the highly interrupted cutting 
process presented in [Altintas 2020]. For Hopf-type stability, 
loss the critical axial depth-of-cut is 

𝑎𝐻 =
−2𝑚𝜔𝑑

𝜌𝜏𝐾

sinh(𝜁𝜔𝑛𝜏)

sin(𝜔𝑑𝜏)
> 𝑎𝐻𝑚𝑖𝑛 =

2𝑚𝜁√1−𝜁2𝜔𝑛
2

𝜌𝐾
,    (4) 

while the process experiences period-doubling induced 
stability loss at 

𝑎𝑃𝐷 =
𝑚𝜔𝑑

𝜌𝜏𝐾

cosh(𝜁𝜔𝑛𝜏)+cos(𝜔𝑑𝜏)

sin(𝜔𝑑𝜏)
> 𝑎𝑃𝐷𝑚𝑖𝑛 =

𝑚𝜁√1−𝜁2𝜔𝑛
2

𝜌𝐾
. (5) 

 

 

Fig. 2: Mechanical model of highly interrupted cutting. 

The stability lobe diagrams generated by formulas (4) and 
(5) are first shown in Fig. 5. 

2.3 Force control with sampling 

The second component of the robot assisted milling 
process is the force control executed by the robotic arm. A 
simple 𝑃 control is applied with sampled data of the position 

of the workpiece, which is used to keep a steady desired 
force 𝐹𝑑  between the workpiece and the end-effector 

[Whitney 1985]. Since the motion of the workpiece in Fig. 3 
is known in a closed form between samples, the dynamical 
system may be written in the form of equation (6) with 
discrete times 𝑡𝑖 = 𝑖ℎ: 

𝒚(𝑡𝑖+1) = 𝑩𝒚(𝑡𝑖),    

𝒚(𝑡𝑖) = [

𝑄(𝑡𝑖)

𝑥(𝑡𝑖)
𝑣(𝑡𝑖)

],     (6) 

where the matrix 𝑩 has entries 

𝑩 = [
0 (1 − 𝑃)𝑘 0

𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33

],  

𝐵21 =
1

𝑘
−

𝑒−𝜁𝜔𝑛ℎ

𝑘√1 − 𝜁2
cos(𝜔𝑑ℎ − 𝜀), 

𝐵22 =
𝑒−𝜁𝜔𝑛ℎ

√1−𝜁2
cos(𝜔𝑑ℎ − 𝜀),  

𝐵23 =
𝑒−𝜁𝜔𝑛ℎ

𝜔𝑑
sin(𝜔𝑑ℎ), 

𝐵31 =
𝜔𝑛𝑒−𝜁𝜔𝑛ℎ

𝑘√1 − 𝜁2
sin(𝜔𝑑ℎ), 

𝐵32 = −
𝜔𝑛𝑒−𝜁𝜔𝑛ℎ

√1−𝜁2
sin(𝜔𝑑ℎ),  

𝐵33 =
𝑒−𝜁𝜔𝑛ℎ

√1−𝜁2
cos(𝜔𝑑ℎ + 𝜀).     (7) 
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The stability of the controlled motion without cutting forces 
(6) is dependent on the eigenvalues of matrix 𝑩 . The 

stability diagram in parameters 𝑃, ℎ is presented in Fig. 6. 

 

Fig. 3: Mechanical model of 1 DoF sampled force control 
a). Sawtooth delay caused by sampling time h b). 

3 EXPERIMENTAL VALIDATION OF BASIC 
MODELS 

3.1 Overview of the hardware-in-the-loop 
experimental system 

In this section a hardware-in-the-loop (HIL) 
experimental setup is used to verify the models shown in 
sections 2.2 and 2.3. The HIL setup is presented in Fig. 4 
and consists of a real spindle, laser-based position sensors, 
a low inductance electromagnetic actuator and a ferrite 
dummy tool with high saturation suitable for 
electromagnetic actuation. 

 

Fig. 4: Hardware-in-the-loop measurement system.  

The forces applied by the actuator are updated at 100 
kHz frequency using a National Instruments PXIe-8880 
real-time computer with two NI7976R FPGA modules. The 
main purpose of this setup is to test machine tool vibration 
problems such as turning and milling [Beri 2020]. The fast 
real time computations allow for generating cutting forces 
related to any tool geometry and material property. This 
cost effective and efficient measurement method enables 
the creation of dense experimental stability charts. The 
modal properties of the first mode of the dummy tool are 

approximately 𝑘 = 2 ∙ 106 N/m, 𝑐 =  4 Ns/m  and 𝑚 = 5 g . 
These parameters are used throughout the paper. 

3.2 Milling measurements in the HIL environment 

First let us investigate the validity of the highly interrupted 
cutting model (1) by comparing it against a measurement 
made with the HIL system.  

 

Fig. 5: HIL measurement of milling process and 
comparison with the highly interrupted cutting model (H 

meaning Hopf and PD meaning period-doubling 
bifurcation limit). 

. The HIL system replicated the actual time dependent 
cutting coefficients discretized in 256 points. Fig. 5 shows 
the results of the HIL measurement for milling with 𝑍 = 3 

and radial immersion 1% (leading to 𝜌 = 0.1). For more 

information see [Toth 2023], where this measurement was 
first presented. In Figure 5, the discrete model of highly 
interrupted cutting and the measurement shows agreement 
in stability boundaries and the types of bifurcations match 
exactly. The stable domain estimated by equations (4) and 
(5) is larger than the measured one. The differences 
between this theory and measurement are largely due to 
the simplification of the cutting as impacts since the 
numerical prediction made with the semi-discretization 
method shows improved agreement with the 
measurements [Insperger 2011]. 

3.3 Force control in the HIL environment 

The built-in versatility of this HIL experimental system 
allows for the sampled force control problem to be tested as 
well. We consider the ferrite dummy tool as a dummy 
workpiece and enact the sampled force control algorithm 
with sampling frequencies in multiples of 100 kHz. Figure 6 
presents the results of the stability measurements 
compared to the theoretical prediction. The theory and 
measurements show good agreement. In Fig. 6 several 
notable control parameter combinations are marked and 
the related characteristic multipliers are presented. In the 
following sections, these specific parameter combinations 
𝑃, ℎ  are investigated in the full model of robot assisted 

milling. 
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Fig. 6: HIL measurement of sampled force control. 

4 ROBOT ASSISTED MILLING 

4.1 Numerical approach to the combined discrete 
problem 

In this section, the complete model of robot assisted 
milling (shown in Fig. 1) is investigated by combining 
models (1) and (6). The aim of this configuration is to allow 
for increased productivity by accommodating larger axial 
depth-of-cuts than what is attainable without the force 
control present. This also suggests that we should generally 
investigate parameter combinations where the sampling 
time is shorter than the tooth-pass period: ℎ < 𝜏 . If this 

condition is not met, the unstable character of the milling 
process would take effect between samples and deteriorate 
the finished surface even for a stabilized milling process 
(note that this condition is not strict and parameters where 
𝜏/ℎ ≅ 1  might be worth investigating in the future). 

The sampling and cutting in models (1) and (6) are both 
treated as discrete events. This means that the combined 
model can also be treated discretely, however, since the 
time steps ℎ and 𝜏 can be different, it is not clear what the 

principal time period of the resulting discrete model is. First, 
the special case of 𝜏/ℎ = 𝑟 with 𝑟 ∈ ℕ is investigated. In 

this case, the principal time period is simply 𝜏 and consists 

of 𝑟 subsequent sampling steps and one impact like cutting. 

This special case leads to the discrete model 

𝒚(𝑡𝑖+1) = (𝑩𝑟 +
𝜌𝜏

𝑚
𝑎𝐾(𝑷1 + 𝑷2𝑩𝑟)) 𝒚(𝑡𝑖) + 𝑱

0
,  

𝑷1 = (−1) ∙ 𝑷2 = [
0 0 0
0 0 0
0 1 0

] ,   𝑱
0

= [

0
0

𝜌𝜏

𝑚
𝐹0

].  (8) 

The stability of system (8) simplifies to an eigenvalue 
problem again. Generally, however, the ratio of 𝜏/ℎ is not 

an integer, so for a dense stability chart in parameters 𝑛, 𝑎 

with fixed ℎ, a more general approach is needed. All ratios 

of 𝜏/ℎ  can be arbitrarily accurately approximated with a 

rational number 𝑟/𝑠 , where 𝑟, 𝑠 ∈ ℕ.  With this 

approximation, the combined system has principal time 
period 𝑟ℎ = 𝑠𝜏, which consists of 𝑟 number of sampling and 

𝑠  number of impact like cutting events. The dynamical 

system in this general configuration can once more be 
reduced to an eigenvalue problem, however the matrix in 
question becomes too complex to provide structured 
analytical stability boundaries. This rational ratio method is 

used as a numerical approach to generate the stability lobe 
diagrams in section 4.2. 

4.2 Continuous approximation of sampled system 

For more generic and applicable analytical results, we 
use a different approach to the rational ratio method of 
section 4.1. In case of sufficiently large sampling frequency 
𝑓𝑠 = 1/ℎ, the actuation can effectively completely override 

the oscillations of the workpiece with its damped natural 
frequency between samples. In this case, it is possible to 
approximate the discrete sampled force control system (6) 
using a simple continuous mechanical analog with 
matching new modal parameters [Budai 2017]. This 
continuous approximation seems accurate in case of 𝑓𝑠 ≥
 4𝜔𝑛/2𝜋, meaning that only about a quarter wave of the 

natural oscillations can take place between samples. This 
condition also effectively guarantees that the sampling time 
ℎ ≤ 2𝜋/4𝜔𝑛 is smaller than the tooth-pass period 𝜏, since 

the Hopf-type lobe corresponding to the fastest tooth-pass 
has an asymptote at 𝜏 = 2𝜋/𝜔𝑛. Figure 7 shows how the 

sampled and controlled system is substituted for a 
continuous one, matching the characteristic multiplicators 
of system (6) to the characteristic exponents of the new 
continuous model. 

 

Fig. 7: Substitution of sampled force control system a) for 
simple oscillator b). 

First consider the parameters ℎ = 2 ∙ 10−5 s  and 𝑃 =
0.8 (point A on Fig. 6) where the dominant characteristic 

multipliers of the sampled force control system are a pair of 
complex conjugate roots 𝜇1,2 and the third root is a highly 

damped real root (like the ones shown in Fig 7.). In this 
case, the substituting simple oscillator should be 
underdamped with 

 −𝜁2𝜔𝑛2 ± 𝑖𝜔𝑑2 = 1/ℎ ∙ ln(𝜇1,2),    

𝑘2 = 𝑃𝑘, 𝑚2 =
𝑘2

𝜔𝑛2
2 , 𝑐2 = 2𝑚2𝜁2𝜔𝑛2.     (9)  

Now the combined force control and highly interrupted 
cutting system are substituted for a workpiece with modal 
properties (9) subjected to the same highly interrupted 
cutting process. This means the stability can be calculated 
with the same formulas (4) and (5) using the new modal 
parameters 𝑚2, 𝜁2, 𝜔𝑛2  and  𝜔𝑑2 . Figure 8 shows the 

stability lobe diagrams resulting from the previously 
discussed model with cutting conditions 𝑍 = 4, 𝜚 = 0.08 

and 𝐾 = 2.5 ∙ 108 N/m2.  
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Fig. 8: Stability lobe diagram for the robot assisted milling, 
in case of underdamped control behavior. 

In Fig. 8, the continuous approximation shows good 
agreement with the rational ratio method in section 4.1. The 
force control results in significantly improved stability 
compared to no control at all, which is expected since we 
could essentially tune the problematic modal properties of 
the slender workpiece to be more beneficial. 

The example in Fig. 8 could already greatly improve the 
stability of the milling process, however, there are even 
more possibilities there. We can tune the control 
parameters, such that the characteristic multipliers of the 
force control system alone are all stable real valued (ℎ =
2 ∙ 10−5 s and 𝑃 =  0.04, point B on Fig. 6). Ignoring the 

highest damped real root, we can now consider substituting 
the force-controlled workpiece with an overdamped one 
with parameters: 

𝜆1,2 = 1/ℎ ∙ ln(𝜇1,2),    

𝑘2 = 𝑃𝑘, 𝑚2 =
𝑘2

𝜆1𝜆2
, 𝑐2 = 2𝑚2𝜁2𝜔𝑛2.    (10)  

The overdamped workpiece exhibits significantly different 
behavior from the previous ones and being exposed to 
highly interrupted cutting, it presents the system in form 

𝒙(𝑡𝑗+1) = 𝑨2𝒙(𝑡𝑗) + 𝑰0,      (11) 

where the matrix 𝑨2 has entries 

𝑨2 = [
𝑈11 𝑈12

𝑈21 𝑈22
],  𝑈11 =

𝜆2𝑒𝜆1𝜏−𝜆1𝑒𝜆2𝜏

𝜆2−𝜆1
 , 𝑈12 =

𝑒𝜆2𝜏−𝑒𝜆1𝜏

𝜆2−𝜆1
 ,  

𝑈21 =
𝜆1𝜆2𝑒𝜆1𝜏−𝜆1𝜆2𝑒𝜆2𝜏

𝜆2−𝜆1
+

𝜌𝜏

𝑚
𝐾𝑎 [1 −

𝜆2𝑒𝜆1𝜏−𝜆1𝑒𝜆2𝜏

𝜆2−𝜆1
],  

𝑈22 =
𝜆2𝑒𝜆2𝜏−𝜆1𝑒𝜆1𝜏

𝜆2−𝜆1
−

𝜌𝜏

𝑚
𝐾𝑎

𝑒𝜆2𝜏−𝑒𝜆1𝜏

𝜆2−𝜆1
.   (12) 

 

Fig. 9: Stability lobe diagram for the robot assisted milling, 
in case of overdamped control behavior. 

The overdamped system is actually resistant to Hopf-type 
stability loss and the single stability boundary related to the 
period-doubling bifurcation is 

𝑎2𝑃𝐷 =
𝑚2(𝜆2−𝜆1)

2𝜌𝜏𝐾

(𝑒𝜆1𝜏+1)(𝑒𝜆2𝜏+1)

𝑒𝜆2𝜏−𝑒𝜆1𝜏
> 𝑎2𝑃𝐷𝑚𝑖𝑛 =

𝑚2𝜆2𝜆1

𝜌𝐾
. (13) 

Figure 9 shows the stability lobe diagrams resulting from 
this overdamped case. The rational ratio method and 
continuous approximation agree closely once more. The 
overdamped nature of the substituted workpiece erases the 
stability lobes, and a single period-doubling limit remains. 
This can greatly improve stability, particularly for high 
spindle speeds (in the region of the first original lobes). 

Another interesting case to investigate is when the 
force-controlled system on its own presents the fastest 
possible settling in hopes of achieving even more 
improvements in stability. This occurs when all 
characteristic multipliers are equal to each other at ℎ =
3.23 ∙ 10−5 𝑠  and 𝑃 = 0.2684  (point C on Fig. 6). In this 

case, not one of the real roots may be discarded, so a 
different, third order substitution with no classical 
mechanical analogy can be made leading to an equation of 
motion excluding the cutting forces: 

𝑗2𝑥(𝑡) + 𝑚2�̈�(𝑡) + 𝑐2�̇�(𝑡) + 𝑘2𝑥(𝑡) = 0,  (14) 

where the parameters are 

𝜆 = 𝜆1,2,3 = 1/ℎ ∙ ln(𝜇),  

𝑘2 = 𝑃𝑘,  

𝑐2 = −𝑃𝑘
𝜆1𝜆2+𝜆1𝜆3+𝜆2𝜆3

𝜆1𝜆2𝜆3
,  

𝑚2 = 𝑃𝑘
𝜆1+𝜆2+𝜆3

𝜆1𝜆2𝜆3
,  

𝑗2 =
−𝑃𝑘

𝜆1𝜆2𝜆3
.     (15) 

Considering workpiece with properties (14) and (15) 
subjected to the cutting conditions leads to a three-
dimensional discrete model that is lengthy, but solvable 
resulting in the single period-doubling lobe seen in Fig. 10. 
Once more, the two methods show good agreement and 
the increase in stability is significant. In fact, even lower and 
more attainable spindle speed regions ( 15 − 40 krpm ) 

become highly stable, which is a very promising result for 
the effectiveness of this chatter attenuation technique. 

 

Fig. 10: Stability lobe diagram for the robot assisted 
milling, in case of fastest settling control behavior. 

4.3 Additional complex cases 

In section 4.2, we were able to show numerical and 
analytical predictions for the stability of robot assisted 
milling for a wide spectrum of parameters. However, there 
are some special parameter combinations of the force-
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control system that present even more strange dynamics 
and related stability lobe diagrams, which are yet to be 
accurately estimated using the continuous approximation. 
The first case includes a real characteristic multiplicator of 
the force-controlled system in the left-half plane (see point 
D in Fig. 6), which results in strange characteristic 
exponents that may need even higher order dynamical 
systems to approximate accurately. The control parameters 
corresponding to point E in Fig. 6 presents a more 
conventional stability lobe diagram with both Hopf and 
period-doubling lobes, but with a different arrangement 
compared to the one in Fig. 8. Figure 11 shows the stability 
charts calculated with the rational ratio method for the two 
complex cases. While even these cases shown in Fig. 11 
can increase stability compared to the system without any 
control, they are less desirable than the cases in section 
4.2. 

 

Fig. 11: Stability lobe diagram for the robot assisted 
milling, in complex cases (point D on top and point E on 

the bottom). 

5 SUMMARY 

The chatter suppression technique of using a robotic 
arm to support a slender workpiece was proposed and 
investigated. First, the model of highly interrupted cutting 
and sampled force control was introduced to describe the 
milling process and the effect of the robotic arm on the 
workpiece. These models were also experimentally 
investigated and validated by constructing dense stability 
charts using our hardware-in-the-loop system. 

The combination of these two models describes the 
robot assisted milling. In the combined model, the paper 
presents two methods for stability prediction. First, the ratio 
of tooth-pass to sampling was approximated with a rational 
number allowing for a discrete dynamical model to be 
constructed and analyzed. This technique is applicable 
numerically. The second proposed method, applicable to 
sufficiently fast sampling, is based on the substitution of the 
sampled control system with an alternative workpiece 
matching in modal behavior. This method resulted in 

analytic formulas for the stability curves. The two methods 
show good agreement. 

The combined model of robot assisted milling displayed 
greatly improved chatter resistance, particularly in the case, 
where the sampled controller was tuned to the fastest 
settling. Here, a large highly stable domain was observed 
even for relatively small spindle speeds. 

There are, however, some parameter combinations that 
have not yet been fully explored, including smaller sampling 
time applications. The current methods propose minimum 
sampling frequency 𝑓𝑠 ≥  4𝜔𝑛/2𝜋, enforcing a necessity of 

potentially high computation power. Another avenue to 
improve the predictive power of the discussed models is to 
consider a more accurate description of the milling process 
than the highly interrupted cutting one, since even the 
experimental methods revealed some inaccuracy of this 
model compared to numerical solutions provided by the 
semi-discretization. The experimental validation of the 
combined robot assisted milling model is also needed in the 
future. 
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