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The article deals with the design of the educational model of 
the robot, where, in addition to kinematics, the control system 
of the robot and the simulation of the robot's activity in the 
GAZEBO environment are also addressed. Students can train 
different control algorithms on this model. At the same time, a 
graphical interface for simulating the robot's activity is also 
created. The control system is composed of a low-cost 
embedded Arduino system, which is very easy to program and 
create control systems. Simulations and experiments showed 
the correctness of the design methodology of such a robot 
model. 
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1 INTRODUCTION  

The development of production process management 
methodology has now significantly accelerated and streamlined 
the quality of many industrial processes, in which modern 
management methods and algorithms have played a significant 
role. It is mainly due to the development of control systems, 
sensors and communication systems that can optimally control 
industrial processes in real-time with high accuracy and quality 
[Wang 2021, Krenicky 2022]. Therefore, robotics is an integral 
part of product development. A robot is an artificial agent, 
which means that it serves as a substitute for a person while 
doing the things for which it is intended. The word "robot" first 
appeared in 1920 in the drama of the Czech novelist Karel 
Capek entitled "Rossum's Universal Robots". Although in 
fiction, robots usually look like humans, in reality, most robots 
do not, but they are machines controlled by a computer 
program and electronic circuits. 
Robots are beneficial and necessary in the industry because 
they do a lot of repetitive tasks, dangerous and tedious work 
instead of people. They are complex systems that require 
almost all information technology and electrical engineering 
branches to function correctly. Modern control system 
components and control algorithms have enabled robotics to 
research and develop robots with an extensive range of 
applications in various areas of industry. In addition to 
industrial production, robotics also appears in healthcare, 
research, film production, construction, and households. 
This work focuses on the types of robots mainly used in 
industry and has a mechanical structure suitable for handling 
objects [Zhong 2006]. These types of robots are denoted as 
industrial manipulators. The work presents what robotics is, 
what mechanical structures of robots exist and how they are 
controlled. Furthermore, basic procedures for calculating 
mathematical models that control robots and procedures for 
configuring the hardware structure to control mechanical parts 
will be presented. 
One of the vital areas for developing and applying robotic 
systems is parallel robots, which use cables to achieve 

movement. This work allows looking deeper into the topic of 
these types of robots, their advantages over other types of 
manipulators and what challenges they face. A robot of this 
kind was chosen for the practical part of this work. Easily 
accessible software and hardware components were used to 
assemble such a robot. 

2 ROBOT CONFIGURATION DESIGN 

The robot manipulator uses three servo motors with mounted 
arm links (shoulder and elbow). In addition, an end effector is 
placed on the tip of the robot wrist, which has an articulated 
connection with the robot arm and base. This connection is 
required for the robot's end effector to keep a stable horizontal 
position relative to a surface on which the robot's base is 
mounted [Krenicky 2022]. 
The dimensions of the robot are approximately 
310.36×124×257 mm, see Figure 1. The maximum designed 
load capacity of the robot that it should be able to handle is 
approximately 0.5 kilograms. Its task will be to perform 
movements set by the operator, grip and move objects with the 
end effector. 

 

Figure 1. Construction and dimensioning of the robot 

3 ROBOT CONTROL AND SIMULATION  

To control a robot, we need to create its kinematic model. That 
is at least its inverse kinematics. Then there is a need to select 
how the calculated values will be sent to the individual motors, 
i.e., connect the outputs of the kinematic model to a particular 
network. When considering how this will be achieved, it is good 
to examine the options available properly [Bozek 2023]. The 
following section will show what results were found when 
searching for a solution. 
Simulation is a crucial phase in the design of any robot. 
Simulators allow us to quickly test new designs and see how 
this implementation fits the design before starting the hard 
work of designing a real robot. It can be risky for robots if the 
designer has designed a model that has not been tested in the 
simulation. The robot can be unreliable if some parameters are 
not considered. 
Various software platforms have been developed to study 
spatial serial and parallel robots, using the ROS (Robotic 
Operating System) control and simulation software. Examples 
of such existing platforms are MATLAB/Simulink and ZeroSim. 
These platforms are flexible for the possibility of adding their 
serial and parallel robots of various types, and it is possible to 
extend them with other algorithms. However, Gazebo is the 
ROS-integrated simulation platform for studying any type of 
robot. It allows creating and analysing of any parallel robot with 
the ability to customise algorithms. 
With Gazebo, it is possible to use different simulation engines. 
ODE (Open Dynamics Engine) is the default. It also supports 
Bullet (Bullet Real-Time Physics Simulation), but currently, not 
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all features. Therefore, using Bullet as an extension for Gazebo 
is better for kinematic calculation and simulation. 
The current version of the platform includes analytical tools for 
each of the following areas: 
• Dynamics and control 
• Motion and sensor control 
• Kinematics 

o Direct kinematics 
o Inverse kinematics 

• Workspace analysis 
• Design optimisation 
It also offers a graphical interface for a complex solution, 
making the selection of a given robot and kinematic model and 
the control and triggering of movements very simple. 
A new parallel robot model can be added to Gazebo by 
specifying it in semi-structured XML data files. There are four 
main files, robot.urdf, config.xacro, spawn.launch and 
empty.world. Robot.urdf defines the robot body, links, and 
joints. Config.xacro contains a set of link layouts, connection 
points of joints, and properties. Spawn.launch is a set of how 
files must load in Gazebo and Rviz, set properties for 
corresponding features of the robot through the files 
mentioned earlier and apply any additional configuration files. 
Finally, empty.world is a world that surrounds the robot. It is 
required for the robot to spawn on the ground underneath 
instead of endlessly falling in the simulation. The simulation can 
have more results. The most interesting result that can be used 
for hardware implementation is the generated collision boxes 
of the robot links. It allows to properly model robot parts and 
avoids possible jamming. Orientation of each DOF is generated 
using inverse kinematics. The simulator calculates the circular 
degree of its joints for each robot's position during the 
execution of the trajectory and saves them in a table in 
chronological order. 
The Gazebo is primarily a simulation platform and does not 
offer a hardware implementation but leaves room for it to be 
extended. It offers source code methods and protocols 
developers can use to utilise simulation results for actual 
deployment to an existing robot. ROS is one of the best existing 
means of connecting robotic hardware, which provides a well-
supported interface for expansion and integration with Gazebo. 
In this way, it is convenient to set up easy-to-use robotic 
hardware and take advantage of the flexibility and robustness 
of Gazebo. 
The Arduino platform will be used for solving this work for 
hardware implementation. In this way, it is best to use object-
oriented principles of the C++ program to cooperate with the 
Arduino board. Arduino creates an algorithm in which all 
processes are connected in a loop mode. Any node in the 
system works with other nodes in synchronisation. Figure 2 
shows a simplified Arduino program architecture for the robot. 
Nodes represent the processes in which the calculations are 
performed. A system of numerous nodes is created on the 
Arduino to control various functions. It is better to have 
numerous nodes that provide only one function than one 
complex node that creates everything in the system. The 
program is flashed on the Arduino board through the USB 
interface via the Arduino IDE or Arduino CLI user programs. 
A program written in C++ is used on the PC to control Arduino, 
which establishes the connections between the PC and the 
Arduino board and allows them to communicate. This main 
program is only for communication between the user and the 
robot and does not contain a program to control the robot's 
servo motors. 
The communication programs on the PC and Arduino 
communicate by sending messages over a USB serial port. The 

input contains data that gives Arduino information about which 
servo motor needs to change position and by what amount. 

 
Figure 2. Architecture of the Arduino program 
Robot Control System (RCS) is a flexible robot control software 
for real-time positioning and setting specific pre-built 
applications for the robot to work with (Figure 3). It is designed 
to be compatible specifically with the robot for this thesis, but 
it is possible to reconfigure the application to use it on other 
robot configurations that use the Arduino board as the central 
controller. The RCS is a collection of tools and libraries aimed at 
simplifying the task of creating complex and robust robot 
behaviours and robot architectures. Its structure consists of 
many nodes that communicate with each other using the 
object-oriented programming language C++ principles. 
 

 
Figure 3. RCS primary control window 

4 ROBOT HARDWARE TOPOLOGY  

The robot model described in the preceding section was used 
to design its hardware topology. Easily accessible and cost-
effective hardware components are proposed for the solution. 
In the proposed solution, it was necessary to divide the task of 
one component into two or more hardware that works 
together as one.  
The control unit consists of a network-connected desktop 
computer-controlled by the operator, who defines the robot's 
operation. For simulation, Gazebo will be communicating with 
ROS through the local host of the computer. At the same time, 
the Arduino board attached to the robot frame will be 
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connected to the computer via a USB interface. Furthermore, it 
will be communicating with special written control software. 
This application waits for a user's input, later sent from the 
computer, to calculate motor commands on the running 
Arduino node. The Arduino microcontroller, while connected, 
executes the motor commands it received through the direct 
servo motor connections. The next chapter describes more 
information about connecting and operating the robot in terms 
of hardware and software. 

5 ROBOT MANIPULATION CONFIGURATION  

The ROS and Gazebo source code is open-source and published 
on the GitHub website, offering downloadable and cloning 
options. Due to the constant development of this simulator, 
any user can install it on a computer and receive new release 
updates with new functions and bug fixes. Furthermore, it will 
provide access to the latest features and AI algorithms. The 
simulator can be launched from Ubuntu using a script that is 
opened in a terminal. 
A new robot can be created and configured using Unified 
Robotic Description Format (URDF) files. URDF is a universal 
and open format for robot configurations (similar to SDF, XML). 
URDF is a simple format that does not carry information about 
the appearance of a robot but only about its content. 
The physical properties of the robot's body, links and joints are 
defined in the robot.urdf file. The following code will show the 
basic structure of the robot.urdf file with the data of the robot 
manipulator of this work (Figure 4). 
The contents of the robot.urdf file is enclosed with a </robot> 
tag, containing at least one link tagged with arm_link. By link is 
meant the body structure of the simulated robot. Within the 
tag, the geometric dimensions of the robot parts are given in 
the order they will be built during the robot simulation. Other 
tags define the properties of the end effector and arm joints, 
including the minimum and maximum possible angle 
orientation and their geometrical representations. 

 
Figure 4. Sample code snippet of the robot.urdf file 

Body positions and properties are defined in the config.xacro 
file. It is necessary to define the exact positions of endpoints in 
each part. For example, a point that connects the base with the 
shoulder and provides a vertical rotation for the robot. The 
maximum load capacity of the end effector is also defined, and 
the minimum force must be applied to the joint point. The 
following code shows a file structure that configures the robot 
manipulator of this project as can be seen on Figure 5. 
The file precisely defines the arrangement of the links across 
multiple tags. For example, the link positions and collisions are 
indicated in the visual and collision tags of the origin tag. In 
addition, each joint has its tag and other mandatory tags within 
it that specify its properties. Such mandatory properties are a 

type of a joint (i.e. revolute, fixed, prismatic), its position, 
parent body and interaction between parent and child objects. 

 
Figure 5. Configuration of the robotic arm in the config.xacro file 

These files describing the robot model must be set up correctly 
so that the robot model can be inserted into the simulator. It is 
possible to examine whether the model has been defined 
correctly in ROS. After each simulator initialisation, the 
available robot models are loaded. Through the graphical 
interface Gazebo, it is possible to select the robot model with 
which work must be done according to the name entered in the 
file (Figure 6). In the displayed robot model area, it is possible 
to quickly check whether the entered information has been 
correct. 

 
Figure 6. Gazebo graphical interface with the loaded robot 

Within the Arduino, robot trajectories can be programmed. The 
determination of one trajectory is possible inside a particular 
matrix, which is sent to Arduino for processing. The individual 
degree values are entered into this matrix, determining the end 
effector x, y, and z positions, respectively, the robot's 
orientation. These points are preprogrammed inside the point 
tagging field of the Arduino program. Adding a value with the 
servo motor speed attribute to the end value makes it possible 
to specify how long the robot should go from one point to 
another. In the simulation sample, the robot starts from the 
starting point and rotates 45 degrees left and moves forward 
by 30 cm for five seconds (Fig. 7). 
In the spawn.launch file; it is possible to manually set initial 
options for the simulation, i.e., the configuration files of a 
trajectory generation for the robot (Figure 8). Within a 
joint_state_publisher node, ROS automatically defines multiple 
joint positions, each under its name, specified in the robot.urdf 
file (Figure 9). Each joint state has to be specified inside the 
URDF file of the robot under a joint tag. Inside the tag is 
declared a name of a respective joint and its type (i.e., revolute, 
continuous, prismatic, et cetera). After defining the root tag, 
the position of robot links relative to each other must be 
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specified in the origin tag. Then, the individual connection 
points x, y, and z must be inserted. Finally, roll, pitch and yaw 
parameters are set using r, p and y. 

 
Figure 7. Trajectory generation of the robot 

 
Figure 8. Configuration of the spawn.launch file 

After those parameters, a parent and a child link must be set. It 
ensures that the links are held together in a tree-manner 
structure. In the case of the figure example, a connection 
between the robot's shoulder and main arm link is shown. 
Then, inside the axis parameter, the direction of the rotation is 
selected for the revolute joint. Finally, in the limit tag, specific 
velocity and degree limits of the rotation can be set. They are 
not mandatory, but they help ensure that the robot arm has 
the same limits as the actual model. 

 
Figure 9. Example of a defined joint 

After setting up all the necessary files, it is possible to select the 
trajectory and set the kinematic model processing in Rviz for 
the Gazebo simulation. This project will show how the 
simulator generates movement using an inverse kinematics 
solver. Therefore, the option of the solver an LMA kinematics 
plugin is selected. This plugin obeys joint limits specified in the 
URDF (and will use the safety limits if specified in the URDF). 
ROS only calls the inverse kinematics solver for one pose (it 
may occur multiple times if the first result is invalid, i.e., due to 
self-collisions). This solution provides a joint configuration for 
the Rviz. ROS already knows the current joint configuration 
from the URDF file and a preset default position. Thus, all 
trajectory planning and execution at that point is done in a joint 
space inside Rviz. Collision detection and constraint checking 
may use inverse kinematics to determine any subgoal joint 
configuration pose, but the planning is not done in Cartesian 
space. After a joint trajectory is found, ROS tries to smooth the 
trajectory to make it less jittering moving, but this does not 
always result in a path that is the fastest one. 
A unique software application was made to control the robot 
manipulator. This program is created using the native Win32 
programming blocks from Windows OS and the open-source 
Arduino serial library, securing communication between the 

app and the Arduino board. Since this application uses C++ 
programming language, it has exact mechanisms for declaring 
libraries using #include as the Arduino program. However, the 
list of libraries is different because distinct functions are 
required for this application to work correctly (Figure 10). 
Additionally, in C++, it is recommended to use so-called 
namespaces. A namespace is a declarative section that delivers 
a scope to the descriptors (such as names of types, functions, 
variables). They unite code into logical clusters and avoid name 
collisions that can transpire mainly when the codebase contains 
multiple libraries. Furthermore, all identifiers at namespace 
scope are visible to one another without qualification. 

 
Figure 10. Library declaring in RCS source code 

The code snippet in Figure 11 shows how the connection 
between Arduino and the program is established. Firstly, 
primary input and output variables are created to guarantee 
the possibility of data transfer. They also pass the 
MAX_DATA_LENGTH argument, which gives the ability for the 
C++ application to send more than 255 character messages to 
the Arduino. Next, a variable pointer is created, which holds an 
address to the Arduino COM port. For a C++ program, a 
computer's memory is like a series of memory blocks, each one 
byte in size and respectively with a unique address. These 
single-byte memory blocks are ordered in a way that allows 
data representations larger than one byte to occupy memory 
that has consecutive addresses. A fascinating property of 
pointers is that they can be used to access the variable they 
point to directly. This property is done by preceding the pointer 
name with the dereference operator (*). The operator itself can 
be read as "value pointed to by". 

 
Figure 11. RCS serial connection code 

In order to receive and process the track bar value from the 
window process, the LRESULT function is used with a 
TBM_GETPOS method (Figure 12). This method retrieves the 
current logical position of the slider in a trackbar. The logical 
positions are the integer values in the trackbar's minimum to 
maximum slider positions range. Then this position is stored in 
the variable of the future corresponding servo motor location. 
If they are in the range of the allowed area on the track bar 
itself, they get stored in the continuous variables, which will be 
passed into the verification function later on. 

 
Figure 12. RCS track bar operation code 

A simple conditional statement is set to verify the correctness 
of the received data and process it back to a send function. 
First, it checks if the data was changed compared to the old 
received data. Then, the corresponding data passes to the 
callback and gets processed in the messaging function if it was 
altered (Figure 13). 
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The message handling function (Figure 14) consists of an array 
building variable, which processes received data into a 
character array. This variable is calculated in size to ensure no 
data leak and parsed additionally inside the Arduino program to 
ensure the integrity of the received data. 

 
Figure 13. Snippet of verification function code 

 
Figure 14. RCS message sending function code 

Then the data is sent to the Arduino board using 
arduino.writeSerialPort(), which passes the charArray and 
removes the 255 character limitation of the sent data. Finally, 
in C++, memory can be managed manually. Therefore, 
removing the character array after it was used to free up the 
declared memory and prevent any possible memory leaks is a 
beneficial practice to do it. Also, this prevents any possible 
variable distortion after the new cycle of the arduinoSend() 
function begins. 
In the following subchapters, tests will be done, demonstrating 
both Gazebo simulation and actual robot movement using the 
RCS software. 

6 SIMULATION WITH GAZEBO  

In order to launch the Gazebo simulation of this project, first, a 
terminal window needs to be opened inside Ubuntu OS (Figure 
15). Then a project directory has to be selected to make it 
easier to execute ROS commands. This selection is made via the 
Linux command cd (change directory) and the path to the 
project folder, which must be separated with a slash (/) symbol 
for each subfolder. Next, a source file has to be loaded to the 
bash environment. After compiling a ROS package for this 
project, this file was obtained and is located in the devel 
directory. 

 
Figure 15. Ubuntu terminal with the executed launching commands 

Finally, the simulation can start with a roslaunch command with 
specified arguments of the project's name and which launch file 
to load. When all these commands are executed in this order, 
Gazebo and Rviz windows open up on the screen after loading.  

 
Figure 16. Gazebo and Rviz simulation windows 

Then, automatically, the robot files are loaded, and its model 
with configurations gets displayed in both programs, see Figure 
16. On the control panel are shown robot controls. Here can be 
selected which planning groups will be transformed for the 
trajectory generation and which kinematic module will be used 
to generate coordinates for the robot's joints. Furthermore, 
path-planning can be done in several ways, for example, 
directly dragging the robot's end effector on a specific position 
or selecting a joint tab and manually inputting degree values for 
the respective joints (Figure 17). Finally, the hand-operated 
angle method can be used as an additional controlling unit for 
the RCS application. As it will help determine trackbar positions 
for the anticipated manipulator orientation. 

 
Figure 17. Rviz manual degree setting for the robot's joints 
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Figure 18. Gazebo robot movement simulation with Rviz 

The first test is moving the end effector manually. This motion 
is made either with arrows forming a Cartesian coordinate 
system or a blue sphere, indicating the end effector location. 
Figure 18 shows how inside the Rviz window, the robot arm is 
moved in a specific direction and how Gazebo simulates the 
movement in the same direction using inverse kinematics 
planning. 
As shown above, the robot can move just in any direction 
commanded by Rviz. However, all motion is restricted to avoid 
exceeding restricted maximal joint angles. These constraints 
are set in the same way as the actual robot model's limitation, 
thus ensuring the correctness of the simulation data. 
Furthermore, it is possible to insert different objects into the 
Gazebo simulation to simulate a robot's environment (Fig. 19).  

 
Figure 19. Robot's environment simulation 

Figure 19 shows how different geometrical objects are 
generated inside the simulation window. 
This potential makes it possible to create industrial 
surroundings for the manipulator with collisions and physics. 
Furthermore, it is possible to generate a trajectory motion for 
the end effector that avoids hitting obstacles on its way. 

7 ROBOT CONTROL SYSTEM TEST 

This test requires the actual robot to be present and connected 
to the host computer with the robot control system (RCS) 
application installed. The manipulator's Arduino board has a 
USB type B port. It will connect the robot directly with a cable 
to any available computer USB. However, by default, the 
computer will not be able to operate with the board. Thus, an 
official Arduino driver must be installed to ensure the proper 
robot operation. Then the RCS application can be launched by 
simply double-clicking the executable file (Figure 20). 

 

 
Figure 20. Robot Control System executable 

A greeting window will appear on a user's monitor when 
everything is installed correctly. In addition, the RCS has a robot 
state notification, which allows the user to see if the robot is 
connected to the system (Figure 21).  

 
Figure 21. Robot Control System verification 

Furthermore, if the connection is suddenly interrupted, RCS will 
change the state and notify the user about disconnection. If the 
connection gets re-established, the program automatically 
proceeds with its workflow. 
Next, motion planning can be started with the robot connected 
to the computer and RCS launched. Each servo motor joint was 
given a respective name and listed in the same order as the 
kinematic chain of the Gazebo simulation. Finally, several 
positioning tests were made and are demonstrated in Figure 
22. Moreover, in this figure, the fourth section demonstrates 
how the end effector works by holding a king’s chess piece. On 
this scale, the end effector is powerful enough to hold more 
challenging objects, for example, screws, nuts, small wood and 
metal plates. 

8 CONCLUSIONS 

Faster and more accurate algorithms have a significant impact 
on the overall operation of the robot. For example, choosing a 
more precise kinematics calculation module could make the 
robot even more stable. The friction and bending that occurs 
when the robot bends over the longest point significantly affect 
the shaking and, thus, the overall system's stability. 
With minor alterations to the hardware and software, such a 
robot could be even more stable and thus suitable for activities 
that require more precise movements, such as a small conveyor 
manipulator. So far, such a robot is suitable for moving smaller 
objects, which can be helpful for personal use, for example, 
sorting, object handling, and other automation processes. 
The robot's interface could be extended to accept commands in 
multiple forms. For example, it could be controlled via a real-
time Gazebo ROS simulation, where the manipulator would 
directly take commands for each incoming move from ROS, 
thus performing complicated movements.  
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Figure 22. Robot movement test with RCS 

The development of similar applications will certainly help to 
improve the knowledge, abilities and skills of students and 
graduates [Bozek 2012, 2016 & 2021, Bezak 2014, Koniar 2014, 
Mikova 2014, Ostertag 2014, Kelemen 2018 & 2021, Liptak 
2018, Pavlasek 2018, Zidek 2018, Saga 2019 & 2020, Tlach 
2019, Oscadal 2020, Kelemenova 2021, Kuric 2021, Virgala 
2012, 2014a,b & 2021, Vagas 2022, Bratan 2023, Vagas 2023 & 
2024, Romancik 2024]. To control these models and systems, it 
is necessary to create a control unit with a microcontroller to 
effectively use the capabilities of this actuator [Kelemen 2012 & 
2014]. 
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