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Abstract 

This paper studies the fixed point iterations method that considers the contraction mapping and one of its 
applications for the parameter re-estimation of the normal (Gaussian) distribution, where the presence of 
outliers is considered.  In order to study the observed method Banach’s fixed point theorem is presented, 
where it is shown that the contraction property is directly related to the Jacobian of the observed mapping. 
Furthermore, convergence analysis is conducted in order to estimate the convergence order of the 
observed model. 
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1 INTRODUCTION 

This paper studies the problem of solving the fixed point 
equation 

𝜽 = 𝐹(𝜽), (1) 

where 𝜽 = (𝜃1, … , 𝜃𝑛) presents 𝑛 dimensional vector of 

parameters and 𝐹: Θ → Θ presents the vector-valued 

mapping of the parameter space Θ ⊆ ℝ𝑛 such that 𝐹(Θ) ⊆
Θ, where Θ ⊆ ℝ𝑛 is considered to be some closed, 

bounded, and convex set. The method to find the solution 
of (1) is known as the fixed point iteration method [Phillips 
1996], [Traub 1982], which idea is to observe a sequence 
(𝜽𝑘) where each element is defined iteratively as 𝜽𝑘+1 =
𝐹(𝜽𝑘). In this situation, if the defined sequence (𝜽𝑘) 

converge,  then its  limit 𝜽𝑘 → 𝜽∗ present the solution of the 

equation (1), and thus it holds that 𝜽∗ = 𝐹(𝜽∗), where the 

solution 𝜽∗ ∈ Θ is called the fixed point of 𝐹. So, in order to 

ensure the convergence of (𝜽𝑘) the sufficient conditions are 

presented which are presented in well known Banach’s 
fixed point theorem. Moreover, the convergence analysis of 
(𝜽𝑘) is also conducted by developing the estimation of the 
convergence order. In the last section, the application of the 
fixed point iterative method is presented in order to re-
estimate the parameters of the normal distribution in a noisy 
environment, i.e. with the presence of outliers [Novoselac 
2019], [Novoselac 2014], [Rousseeuw 2003]. The proposed 
model is developed in a way that includes conditional 
expectations that integrate the fine-tuning parameter which 
regulates a rejection process of noisy data, i.e. outliers. The 
numerical examples have shown that the determination of 

the optimal fine-tuning parameter presents the minimization 
problem which converges linearly to the solution. 

2 CONTRACTION MAPPING PRINCIPLE 

To ensure the existence and uniqueness of the fixed point, 
as well as the convergence of the corresponding iteration, 
the observed mapping 𝐹 must be contractive. 

 

Definition 1. (The contraction mapping) A mapping 

𝐹: Θ → Θ is called the contraction if there exists 0 ≤ 𝐿 < 1 

such that 

 ( ) ( )F F L        

 for all 𝜽, 𝝑 ∈ Θ, where ‖ ⋅ ‖ is some norm. 

 

Geometrically, the contraction means that the distance 
between maps of 𝜽, 𝝑 ∈ Θ under 𝐹 is strictly less than the 
distance between 𝜽  and 𝝑. This means that each step in 

the fixed point iteration process will iteratively contract the 
distance from the current iterative step, which finally leads 
to the solution of the fixed point equation. So, these results 
are presented in the well-known Banach’s fixed point 
theorem for the contraction. 

 

Theorem 1. (The Banach’s fixed point theorem) Let 

𝐹: Θ → Θ be the contraction mapping. Then it holds 
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1. there exists the unique fixed point 𝜽∗ ∈ Θ such 

that 
* *( )F  ; 

2. for any initial guess 𝜽0 ∈ 𝛩 the fixed point iterates 

1 ( )k kF    converge to 𝜽∗ ∈ 𝛩, i.e. 
*

k   ;  

3.  k  satisfies a-priori error estimate  

*

1 0
1

k

k

L

L
  


    ; 

4.  k  satisfies a-posteriori error estimate  

*

1
1

k k k

L

L
  


    . 

 

By considering statement 3. from the Banach’s fixed point 
theorem, the estimation of the error ‖𝜽𝑘 − 𝜽∗‖ ≤ 𝜀, where 

𝜀 > 0 denotes some small predefined value, by considering 

the number of iteration steps that can be easily conducted. 
In this situation, it can be concluded that 

1 0*

1 0

(1 )
log

1 log

k

k

L

L
k

L L








     



 
    . 

(2) 

 

2.1 Criterion for contraction 

The aim of this section is to present the criterion that 
provides the contraction property for an observed mapping. 
To achieve this statement generalization of Lagrange’s 
mean value formula which conducts the relation between 
the Jacobian and contraction properties is observed. So, 
the induced matrix norm which is generated by the 
observed vector norm is first presented and described 
[Phillips 1996].  

 

Definition 2. (Induced matrix norm) If ‖ ⋅ ‖ is a vector 

norm in ℝ𝑛, then we can define the corresponding  function 
‖ ⋅ ‖ on ℝ𝑛×𝑛 for every real squared matrix 𝑨 ∈ ℝ𝑛×𝑛  by 

 
1

max


A A


 .  

The function A A  is called subordinate matrix norm or 

induced matrix norm. 

 

Lemma 1. An induced matrix norm satisfies the following 

properties. 

1. 0A ;  

2.   A A ,   ;  

3.   A B A B ; (triangle inequality) 

4.  A A  ;  

5.  AB A B ; (sub-multiplicative property) 

 

Definition 3. (The matrix spectrum) Let 𝑨 ∈ ℝ𝑛×𝑛 be any 

given squared matrix and 𝑰 ∈ ℝ𝑛×𝑛 identity matrix, then the 

polynomial 

 ( ) det( )P   I A   

is called the characteristic polynomial of 𝑨. The 𝑛 (not 

necessarily distinct) roots 𝜆1, 𝜆2, … , 𝜆𝑛 of the characteristic 

polynomial are all the eigenvalues of 𝑨 and constitute the 
spectrum of 𝑨. Let 

 
1

( ) max i
i n

 
 

A   

be the largest absolute value of eigenvalues of 𝑨, called the 

spectrum of 𝑨. 

 

Theorem 2. Let 𝑨 = (𝑎𝑖𝑗) ∈ ℝ𝑛×𝑛 be a real squared matrix, 

then it follows that some norms of practical interest, namely 
the induced 1-norm, induced 2-norm, and induced ∞-norm: 

1. the induced 1-norm 
1 1

1

max
n

ij
j n

i

a
 



 A ; 

2. the induced 2-norm 
2

( )A A ; 

3. the induced ∞-norm 
1

1

max
n

ij
i n

j

a
  



 A ; 

 

The next theorem presents the generalization of Lagrange’s 
mean value formula for vector-valued mapping [Hall 1979], 
[Marjanovic 2017].  

 

Theorem 3. (The Lagrange’s theorem) Let 𝐹: Θ → Θ be 

differentiable mapping. Then it holds that 

 
0 1

( ) ( ) max '( (1 ) )
t

F F F t t
 

           ,  

where 𝐹′(𝜽) = (𝜕𝐹𝑖/𝜕𝜃𝑗) ∈ ℝ𝑛×𝑛 is the Jacobian matrix. 

 

The next theorem presents a simple criterion for a 
continuously differentiable function to be the contraction. 

 

Theorem 4. (Criterion for the contraction) Let 𝐹: Θ → Θ 

be differentiable mapping. If 

 ‖𝐹′(𝜽)‖ ≤ 𝐿, for all 𝜽 ∈ Θ   

where 𝐹′(𝜽) = (𝜕𝐹𝑖/𝜕𝜃𝑗) ∈ ℝ𝑛×𝑛 is the Jacobian matrix and 

0 ≤ 𝐿 < 1, then 𝐹 is the contraction on Θ ⊆ ℝ𝑛 by 

considering the given norm ‖ ⋅ ‖. 

 

Proof.  By considering the statement that  ‖𝐹′(𝜽)‖ ≤ 𝐿 for 

all 𝜽 ∈ Θ, where 0 ≤ 𝐿 < 1, it may be conclude that for all 

𝜽, 𝝑 ∈ Θ it holds by Lagrange’s theorem that 

0 1
( ) ( ) max '( (1 ) )

,

t

L

F F F t t

L

 



     

 

     

 

 

what directly shows that 𝐹 is the contraction on Θ ⊆ ℝ𝑛. 

 

Finally, by considering the previous theorem of the simple 
criterion of the observed differentiable mapping 𝐹 to be the 

contraction, and the previously mentioned Banach’s fixed 
point theorem, it can be directly concluded that the sufficient 
condition for the existence of the fixed point  is that the norm 
of the Jacobian matrix in the observed fixed point must be 
less than one, i.e. ‖𝐹′(𝜽∗)‖ < 1. 

3 CONVERGENCE ANALYSIS  

One of the main discussions for the iterative processes is 
the order of convergence, i.e. how fast the iterative method 
converges to the fixed point. So, the next definition is 
presented. 
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Definition 4. (Order of convergence) Let the sequence 
(𝜽𝑘) converges to 𝜽∗ ∈ Θ. If there exist 𝐿 ≥ 0 and 𝑞 ≥ 1 

such that  

 * *

1

q

k kL       ,  

then it is said that 𝑞 ≥ 1 is the order of convergence of the 

sequence. The limit value 𝐿 ≥ 0 is the rate of convergence 

or the asymptotic constant. 

 

In particular, it is said for the order of convergence that: if 
𝑞 = 1 then the order of convergence is linear; if 1 < 𝑞 < 2 

then is super-linear; if 𝑞 = 2 then is quadratic; if 𝑞 = 3 then 

is called cubic convergence etc. By considering the fixed 
point iteration for the contraction mapping when the fixed 
point is not stationary, i.e. 𝐹′(𝜽∗) ≠ 0,  it can be concluded 

that at least linear convergence is ensured. In that case, 
associated iterates converge linearly to the fixed point 𝜃∗ ∈

Θ with the rate of convergence 0 max '( )L F


 


 . 

 

Theorem 5. (Higher order of convergence) Let 𝐹: Θ → Θ 

be 𝑞 −times continuously differentiable and let 𝜽∗ ∈ Θ be 

the fixed point of 𝐹 such that  

 
( ) *( ) 0 1,2, , 1.iF i q  for all   

Then it holds that the iterates associated to 𝐹 converge with 

𝑞th  order  to 𝜽∗. 

Proof. Let 
*( ) ( (1 ) )f t F t t    ,  0,1t , for some 𝜽 ∈ Θ. 

Then, by considering Taylor’s expansion of f  on some 

interval  ,a b  to the 𝑞th  order ([Phillips 1996], [Skala 

2021]), there exists  ,c a b  such that  

( ) ( )1

0

( ) ( )
( ) ( ) ( ) .

! !

i qq
i q

i

f a f c
f b b a b a

i q





     

So, taking the expansion of f  to the 𝑞th  order on interval 

 0,1 , and taking into account the statement that 

( ) * ( )( ) (0) 0i iF f   for all 1,2, , 1i q  , it can be written 

that 

 

*

( ) ( )1

1

0

( )

( )

( ) * *

( ) * *

*

( ) ( ) (1) (0)

(0) ( )

! !

( )

!

( )

( (1 ) )( )

( (1 ) )

,

i qq

i

q

q

q q

q
q

L

q

F F f f

f f c

i q

f c

q

f c

F t t

F t t

L









  

 





   

    

 



 

   

   

 

  

where 𝐿 ≥ 0. Therefore it holds that  

 
* * *

1 ( ) ( ) ,
q

k k kF F L             

for all 𝑘 ∈ ℕ, what proves the statement of the theorem. 

 

3.1  Estimating the order of convergence 

In this subsection, the estimation of the order of 
convergence is presented. For that purpose let suppose 
that a sequence (𝜽𝑘) converges to 𝜽∗ ∈ Θ with the 𝑞th 

order, where 𝑘th error of an iterative process is denoted as 
*.k k  e  (3) 

Because (𝜽𝑘) converges with the 𝑞th order,  it is clear that 

if k   it holds that 

1 1

q q

k k k kL L  ande e e e  (4) 

 what directly implies that 

1

1

,

q

k k

k k





 
   
 

e e

e e
 (5) 

and thus   

 
 

1

1

log /
.

log /

k k

k k

q





e e

e e
 (6) 

In order to use this formula as an estimator of the order 
convergence, the fixed point must be omitted from 
observation because it is not known. For that purpose let's 
expand the mapping 𝐹 to the 𝑞th  order by the Taylor series 

([Phillips 1996], [Skala 2021]) around the fixed point 𝜽∗ ∈ Θ, 

i.e. 

( ) * ( )1
* *

0

( ) ( )
( ) ( ) ( ) .

! !

i qq
i q

k k k

i

F F c
F

i q





   


      (7) 

Noting that 1 ( )k kF    and 
* *( )F   we can obtain by 

(7) that 

( ) * ( )1
* * *

1

1

( ) ( )
( ) ( ) .

! !

i qq
i q

k k k

i

F F c

i q







    


       (8) 

Now it can be easily seen that if we divide a norm of (8) by 
*

k   , i.e. * *

1 /k k      , and consider when 

k  , it can be easily concluded, because 
*

k   , that 

*

1 *

*
lim '( ) .

k

k
k

F









 


 
 (9) 

Likewise, by considering (8), let subtract 
*

1k    from 

*

k    and obtained 1k k   ,  and then afterward divide 

the norm of the subtraction 1k k    by 1k k  . Then 

by considering 1 1/k k k k        when k   it can be 

concluded that 

1 *

1

lim '( ) .k k

k
k k

F









 


 
 (10) 

So, by considering (9) and (10) for suitably large values of 

k  ,  it holds that 

**

*

11 1

*
1

'( )'( )

kk k k

k k kk

FF

 



 
 



e

e



   

  
. 

(11) 

Finally, statement (11) allows to approximate the order of 
convergence (6) without taking the fixed point into account 
as 

 
 

1 1

1 1 2

log /
.

log /

k k k k

k k k k

q
 

  

 


 

   

   
 (12) 
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4 APPLICATION 

The parameter re-estimation problem presents significant 
topics in a wide area of interest, such as statistics, 
mathematical modeling, cluster analysis, image 
processing, etc. [Gonzalez 2008], [Novoselac 2019], 
[Novoselac 2014], [Rousseeuw 2003]. Thereby, in this 
section one iterative model that re-estimates the 
parameters of a normal (Gaussian) distribution 𝑋 ∼
𝑁(𝜇, 𝜎2), where 𝜇 denotes expectation and 𝜎 standard 
deviation with a corresponding PDF (probability density 
function) defined as 

2
1

21
( )

2

x

p x e





 

 
  

  , (13) 

is presented. The proposed method is defined by 
considering conditional expectations 

 

 

1

22

1 1

| ;

| ,

k k

k k k

E X I

E X I



 



 



  
 

 (14) 

where 𝐼𝑘 = [𝜇𝑘 − ℎ𝜎𝑘, 𝜇𝑘 + ℎ𝜎𝑘] denotes an interval that is 

centered around the corresponding expectation. Interval 𝐼𝑘 

is constructed in such a way that it is considered the fine-

tuning parameter 0h   that regulates a rejection of tails of 

a low probability [Novoselac 2019], [Rousseeuw 2003]. So, 
in Fig. 1 it is shown the relation between the fine-tuning 
parameter ℎ > 0 and the standard deviations 𝜎 that creates 

the regions of corresponding probabilities. 

 

Fig. 1: The probability regions. 

Furthermore, by taking into account the fact that each 

normal distribution 𝑋 ∼ 𝑁(𝜇, 𝜎2) can be transformed to the 

standard normal distribution 𝑁(0,1), which can be obtained 
by scaling by 𝜎 and shifting by 𝜇, i.e. 𝑋 = 𝜇 + 𝜎𝑁(0,1), the 

study of the proposed method is conducted only for the 
standard form when 𝑋 ∼ 𝑁(0,1).  

 

4.1 Continuous case random variable 

In order to conduct the convergence analysis a continuous 
random variable case is observed. Thus (14) can be 
presented as 

2

2

2

2

1

2

1 1

2

1

2 2
1

1 1

2

;

( )

.

k k

k k

k k

k k

k k

k k

k k

k k

h
x

h

k h
x

h

h
x

k

h

k h
x

h

xe dx

e dx

x e dx

e dx

 

 

 

 

 

 

 

 












 











 


















 (15) 

The Fig. 2 presents the three following iteration steps of the 
proposed method. The filling under the standard normal 
PDF in Fig. 2 presents a conditional expectation area that 
acts on 𝐼𝑘 = [𝜇𝑘 − ℎ𝜎𝑘 , 𝜇𝑘 + ℎ𝜎𝑘] of the current iterative step 

which is defined by  𝑋~𝑁(𝜇𝑘 , 𝜎𝑘
2).  Consequently, the next 

step is obtained by (15), i.e. (14), which generate 

𝑋~𝑁(𝜇𝑘+1, 𝜎𝑘+1
2 ), and the whole process is again iteratively 

repeated in order to calculate 𝑋~𝑁(𝜇𝑘+2, 𝜎𝑘+2
2 ). 

 

Fig. 2: The proposed method. 

The experimental results presented in Fig. 2 have shown 
that the proposed method converges for the different fine-
tuning parameters. The results show that the observed 
error function, which is defined as the difference between 
two steps ‖𝜽𝑘+1 − 𝜽𝑘‖ in sense of 2-norm such that 𝜽𝑘 =
(𝜇𝑘 , 𝜎𝑘), tends to zero for each presented 0h  . The 

presented experimental results are conducted with the 
same starting initialization point 𝜽0 = (𝜇0 = 0.5, 𝜎0 = 0.5). 

 

Fig. 3: The error function. 

Furthermore, by considering the estimation of the 
convergence order (12), Fig. 4 presents that the proposed 
method converges linearly, i.e. 𝑞 ≈ 1 as 𝜽𝑘 → 𝜽∗.  
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Fig. 4: The order estimator. 

 

 

In Fig. 4 the final results of the proposed method are 
presented.  

 

Fig. 5: The re-estimation results. 

By considering the final results in Fig. 5, it can be concluded 

from (15) that when h  , re-estimated parameters tend 

to the standard normal distribution, i.e. 𝑁(𝜇𝑘 , 𝜎𝑘
2) → 𝑁(0,1). 

Situation when 0h   implies stoppage of the iterative 

process because of the dividing zero case. The Fig. 6 
presents the error function with respect to the fine-tuning 
parameter which confirms the final results. The error 
function considers the 2-norm difference between the final 
result 𝜽∗ = (𝜇∗, 𝜎∗)  which is obtained by the corresponding 

ℎ > 0, and the parameters of the standard normal 

distribution, which are denoted as �̃� = (𝜇 = 0, �̃� = 1).  

 

Fig. 6: The fine-tuning parameter. 

 

4.2 Discrete case random variable 

Finally, the proposed method is also illustrated on the 
discrete random variable with the presence of noisy data, 
i.e. outliers. In this situation 𝑋 ∼ 𝑁(0,1) generates data set 

𝑆 = {𝑥𝑖 ∶ 𝑖 = 1, … , 𝑚} which also contains outliers, i.e. 

aberrant data that may lead to model misspecification, 
biased parameter estimation, and incorrect results, what 
can lead to a suspicion that they are generated by a 
different mechanism. It is therefore important to identify 
them prior to modeling and analysis [Rousseeuw 2003]. So, 
by considering the discrete case, the iterative process (14) 
can be written as     

𝜇𝑘+1 = Mean 𝑆𝑘; 
 
𝜎𝑘+1 = StdDev 𝑆𝑘, 

(16) 

where 𝑆𝑘 = {𝑥𝑖 ∈ 𝑆 ∶  𝑥𝑖 ∈ 𝐼𝑘},  𝐼𝑘 = [𝜇𝑘 − ℎ𝜎𝑘 , 𝜇𝑘 + ℎ𝜎𝑘]. In 
this situation Mean denotes the arithmetic mean of data set 

𝑆𝑘, while StdDev denotes the standard deviation.  So, for 
that purpose the Fig. 7 presents the numerical example 
where the data set 𝑆 is denoted on the abscissa. The black 

data points present the data which are generated by the 
standard normal distribution, while the red data points 
denotes noisy data, i.e. outliers. Experimental results are 
conducted for the same initialization point 𝜽0 = (𝜇0 =
0.5, 𝜎0 = 0.5), where is shown that the proposed method 

achieves different results for the different fine-tuning 
parameters ℎ > 0.   

 

Fig. 7: The discrete noisy case. 

In the numerical example which is presented in Fig. 7, the 
determination of the optimal fine-tuning parameter ℎ > 0 

presents the optimization problem of the error function 

‖𝜽∗ − �̃�‖,  where 𝜽∗ = (𝜇∗, 𝜎∗) presents the final result of the 

proposed method for the discrete case with the 
corresponding ℎ > 0, and the parameters of the standard 

normal distribution, which are denoted as �̃� = (𝜇 = 0, �̃� =
1). In Fig. 8 it is shown that the optimal ℎ > 0 is attended at 

ℎ = 2.4, which minimizes the observed error function in 

order to re-estimate the standard normal distribution.  
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Fig. 8: The fine-tuning parameter. 

5 SUMMARY 

It is shown in the presented investigation that the fixed point 
iteration method can be effectively managed and modeled. 
To study the fixed point iteration model and conduct the 
convergence analysis, a wide range of applicable numerical 
analysis is presented and used. Furthermore, experimental 
research has shown that the proposed iteration model for 
parameter re-estimation of the normal distribution 
converges linearly, where different fine-tuning parameters 
balanced a restriction of tails of low probabilities. For that 
purpose, the discrete random variable case is observed 
with the presence of outliers, where it is shown that in this 
case, a determination of the optimal fine-tuning parameter 
presents minimization of the observed error function in 
order to re-estimate the standard normal distribution.   
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