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Abstract

The rising share of variable renewable electricity in Germany has increased price volatility, emphasizing
the need for demand response. This study introduces an execution service within Energy-Aware
Production Scheduling (EAPS), using OPC UA for automated schedule implementation. Based on real
industrial data, machine states and energy use are modeled, enabling a cyber-physical system to optimize
makespan, energy costs, and peak load. Simulations show a 6 % energy cost reduction compared to the
Shortest Processing Time dispatching rule. Successful integration with four simulated OPC UA servers
confirms system stability, demonstrating the enhanced EAPS architecture's potential for automated,

energy-flexible, and sustainable manufacturing.
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1 INTRODUCTION

In 2023, electricity generation from renewable energy
sources surpassed that of conventional sources in
Germany for the first time [AGEE-Stat 2025]. This
transformation in electricity generation results in increased
volatility of electricity prices in the energy market [Sauer
2019; Sauer 2022]. At the same time, the peak load costs
have risen. The increase in 2024 was around 25 percent
compared to the previous year in Germany
[Bundesnetzagentur 2025]. This development presents
novel prospects for industrial companies to reduce energy
costs through demand response measures [Sauer 2022].
Demand response refers to the deliberate adjustment of
electricity consumption in reaction to price signals or grid
requirements [U.S. Department of Energy 2006]. This
approach enables companies to reduce costs by shifting or
curtailing energy use during peak demand periods
[Walther 2022].

Furthermore, preliminary empirical studies indicate a
positive correlation between enhanced energy efficiency
and a company’s financial performance [Fan 2017;
Ozbugday 2020]. Biel [2016] showed that the topic of
energy-aware production scheduling has become
increasingly popular in recent years. EAPS refers to the
development of production schedules that integrate
conventional production-related objectives—such as
throughput, lead times, and resource utilization—with
energy-related goals [Grosch 2024]. Energy costs have
proven to be particularly relevant in EAPS [Biel 2016].
Previous studies have achieved a reduction in energy costs
through the implementation of production planning

methodologies on individual production machines, with a
focus on the \volatile electricity market prices
[Grosch 2022b; Fuhrlander-Volker 2023]. To the best of our
knowledge, there is a lack of EAPS frameworks that can be
used in a real production system. This is consistent with the
literature review findings in [Gao 2020; dos Santos 2023;
Grosch 2024].

Therefore, the aim of this work is to integrate an execution
service into an EAPS architecture and enable the final
architecture to be used in the production system.

In section 2, we present our findings of the literature
research. The architecture proposed in this paper is
described in section 3. Section 4 demonstrates the
practical relevance of our approach through its application
to an industrial use case involving real process and order
data. In section 5, we conduct a simulation-based validation
to assess the architecture’s performance. Finally, section 6
offers a critical reflection on our findings and outlines
potential directions for future research.

2 STATE OF RESEARCH

To identify the research gap, we conducted a structured
literature review following the methodology proposed by
vom Brocke [2009]. The key findings of the review are
summarized as follows:

Only one study implements a scheduling model within an
actual production environment [Gao 2024]. Four studies
validated their approaches using industrial data [Li 2022;
Qu 2022; Gao 2024; Ye 2025], while another four rely on
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benchmark datasets available in the literature [Salido 2017;
Nouiri 2018; Mota 2023; Chen 2024]. Additionally, one
study tests a small instance of an abstract use
case [Defersha 2022]. Gao [2024] propose a digital twin-
based scheduling model for a production system and
evaluate their approach through a real-world application in
an automobile welding process. Ye [2025] apply a
reinforcement learning approach to address the dynamic
real-time scheduling problem under variable energy pricing
conditions. Similarly, Mota [2023] develop a job-shop
scheduling method that accounts for fluctuating energy
prices by incorporating renewable energy resources into
their mathematical model. Gao[2020] conduct a
comprehensive literature review and identified future
research directions, emphasizing the importance of directly
integrating energy-efficient planning methods into
production planning systems.

To summarise, the literature review points to the lack of an
integrated architecture for the automated execution of
energy-aware production schedules using industrial
communication protocols such as OPC UA. Furthermore,
there seems to be no optimisation approaches that
simultaneously consider objectives such as peak loads,
energy costs and makespan. In addition, there are only a
few approaches with real industry and order data.

Therefore, the objective of this research is to develop an
architecture that can execute planned energy-aware
schedules in a production system. In order to accomplish
this research goal, the present study proposes an
expansion of an extant production planning tool, with the
objective of optimising peak loads, energy costs and
makespan.

3 ARCHITECTURE

This section introduces the EAPS execution service by
outlining its essential requirements, providing a description
of the current EAPS architecture, and explaining the core
functionalities of the service along with its integration into
the existing EAPS framework.

3.1 Requirements for the EAPS execution service

The objective of this work is to deploy an existing method
for EAPS in a production environment. To ensure the
transferability of the presented approach to other
production processes and use cases, we define success
criteria.

Based on the Quality Attribute Definitions by
Bansiya [2002], the following requirements are defined:

e Reusability: The architecture should be applicable
to new problems and use cases with minimal
effort.

e Flexibility: The architectural design should be
conceived in such a manner that it is readily
adaptable and transferable to alternative energy-
aware production planning methodologies and
implementations.

e Understandability: The implementation should be
comprehensible and well structured. The aim of
the extension is to enable the integration of an
EAPS method into a production system.

This work extends an existing EAPS methodology for the
automatic execution of planned jobs. We select the
developed method for EAPS by Grosch [2024]. Grosch
evaluated the effectiveness of the method in an industry-
related use case in the ETA research factory at Technical
University of Darmstadt.

3.2 Description of the existing EAPS architecture

Grosch [2024] highlights the research gap concerning the
absence of conceptual frameworks that enable the
application of EAPS in real-world production environments.
To address this deficit, Grosch proposes a methodology
involving the implementation of a cyber physical system. To
this end, Grosch designs an implementation process and
an EAPS architecture.

The core architecture elements are the optimisation
algorithm and the virtual representation of real production
systems, called environment. The production systems
environment holds the energetic machine models. The
environment can also maintain a constant awareness of the
orders scheduled for production and the inventory levels
within the production system. The Non-dominated Sorting
Genetic Algorithm Il solves the multi-objective optimisation
problem, minimising makespan and energy costs. The
implementation of this adapted algorithm is inspired by
Deb [2002]. The production system configuration provides
the necessary information for the instantiation of the
production system environment, including machine
parameters and the manufacturing steps of the products.
The EAPS framework is published under open source
licence [Grosch 2024].

The present development status of the framework
represents the virtual area of the production system. It
should be noted that a connection to a real production
system has not yet been implemented. This supports our
decision in using this EAPS method to implement the
automated control capability of machines in the existing
architecture.

3.3 Description of the EAPS execution service

The following section provides a detailed description of the
developed EAPS execution service, which is based on the
virtualised environment and architecture. We select the
Python programming language to implement the execution
service, as it offers a comprehensive selection of libraries
that support object-oriented programming. Fig. 1 shows a
simplified Unified Modelling Language (UML) diagram of
the service.

The modular service enables energy-aware planned jobs to
be executed automatically. First, the energy-aware
production plan is exported as a formatted CSV file. This
file contains the following column labels, which are
important for the internal flow of the service:

e starttime: Specifies the timestamp which the job is
initiated. In cases where a setup process is
required, this timestamp precedes the
working_starttime.

e working_starttime:  Specifies the scheduled
timestamp when the machine transitions into
working mode. From this moment onward, drives
are actively processed.

e endtime: Specifies the scheduled completion
timestamp of the individual machine program,
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marking the end of the job's execution on the
assigned machine.

e machine: Specifies the specific
machine to which the job is assigned.

e job: Refers to the unique identifier or number
assigned to a production job.

e capacity: Represents the processing capacity of
the machine, particularly relevant in scenarios
where multiple components can be handled
simultaneously.

The defined columns ensure that each production step is
unigue and can be accurately associated with its
corresponding job.

We divide the service into two main functionalities and
classes. One class manages the connection to the
production machines, while the other implements a
scheduler. The ConnectionManager establishes a direct
connection to the machine's programmable logic
controller (PLC) via configured nodes. To achieve this, it is
necessary to transfer the configuration file from the
BaseExecutionEnv to the parent class. The structure of the
config is used from the eta-nexus package (version 0.1.1),
which has been further developed from the eta-utility
package [Grosch 2022a]. The ConnectionManager, also
derived from this package, enables the coordination of
multiple protocols (e.g., Modbus and OPC UA) across
multiple machines within a unified configuration file.

For the integration of the production plan into the production
system and the machine control, we propose a systematic
mapping in the NODE_TEMPLATES variable. This
approach enables the abstraction of the machine variables

production

in a standardised, machine-independent notation. The
underlying concept is based on a template-driven mapping
in which the variables from the production plan (machine,
job, capacity) are transferred to a machine-specific
notation. The naming convention follows a consistent
structure and internally defined standard, in which
placeholders (see the machines variable) are used for
machine identifiers in order to generate a unique
assignment for each machine.

The second class is the scheduler. The scheduler approach
is a concept originating from informatics that describes a
component of the operating system responsible for
selecting the next task to be executed [Silberschatz 2018].
The ExecuteProductionScheduler class gets the formatted
production plan and sets the working_starttime for the job
activation timestamp. The scheduler also stores the other
information for the planned operation in the task. To
maximize  efficiency,  asynchronous  programming
paradigms are utilised. The implemented scheduler is
based on the python package apscheduler
[Grénholm 2024], where we used the implemented
asynchronous scheduler.

Moreover, the ExecuteProductionScheduler class inherits
from the ExecutionHandler, which is responsible for saving
the executed orders (schedule_data_store) and comparing
the execution status with the original production plan.

The function execute_production_process in the
BaseExecutionEnv class combines the capseled classes
and ensures the functionality of the enhanced EAPS
architecture.

ExecuteProductionScheduler

+ handler: ExecutionHandler

+ scheduler: AsyncScheduler

+ production_schedule: DataFrame | None

+ init_scheduler(episode_time_start, episode_time_end, use_index_trigger): None
+ execute_production_process (job, machine, endtime, capacity): None

<<asynchron>>

BaseExecutionEnv

+ NODE_TEMPLATES: ClassVar[dict[str, str]]
+ config_name: str

+ connection_manager: ConnectionManager
+ machines: tuple[str] | dict[str | int, str]

+ prod_schedule_file: str

+ state_config: StateConfig

+ experiment(None) <<asynchron>

+ execute_production_process(job, machine, endtime, capacity): None

<<asynchron>

Energy-Aware-
Production Scheduling
Tool

ExecutionHandler

+ schedule_data_store: list[Schedule]

Fig. 1: Simplified UML diagram of the EAPS execution service.
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Fig. 2: Value stream of the company from the German mechanical engineering sector.

4 APPLICATION

This chapter presents the use case, introduces the general
terminology for energy models in the existing EAPS
architecture, applies these models to the use case, and
outlines the implementation of the defined objectives.

4.1 Introduction of the use case

In this study, we utilise a dataset derived from a mid-sized
company in Germany, that operates in the mechanical
engineering industry. The production includes the
manufacture of steel components. This research focuses
on the cutting of steel components for the application of the
EAPS. It intentionally excludes other machinery within the
value chain, such as machining centres or welding robots,
from consideration.

The machinery employed for the implementation of the
EAPS method in the cutting area comprises two laser
cutting machines (GMB and GMD), a flame cutting
machine (GIA), and a sandblasting machine (PBC). The
individual production steps of the use case are depicted
in Fig. 2.

Initially, sheets are retrieved from the sheet metal inventory.
For tasks that require the use of a laser cutting machine,
the sheets undergo a preliminary cleaning process in the
sandblasting machine to eliminate any corrosion. Following
this, the sheets are fed into the laser cutting machine,
where the specific process program is activated. In the case
of orders involving the flame cutting machine, corroded
sheets are inserted directly into the machine, whereupon
the specific processing programme is initiated. The
sandblasting process is characterised by its consistent
processing time. Additionally, we make the following
assumptions regarding the use case:

e The sheet thicknesses are constant.

e One product is permanently one sheet. The
differently cut steel components and the offcuts
are negligible.

e The production program of the sandblasting
system is permanently constant, while the
production program of the other machines varies
depending on the respective job.

e A set-up time is required on all machines before
the start of the production process

4.2 General terminology of the energy models in the
existing EAPS architecture

To apply the developed architecture in this work, it is
necessary to introduce the corresponding general energy
models. The EAPS architecture according to Grosch [2024]
integrates discrete event models of the job shop scheduling
problem with discrete-time linear machine models of the
production machines. The connection between the two
models takes place over the time t. Grosch assumes the
following four energy modes for the EAPS modeling:

e  Off (no power consumption),

e Standby (a),

e Operational (a;*),

e Working (a}*).
At any given timestamp, a machine can be in only one state.
This state is characterised by the specific binary variable a;.
The regression parameters beta €' € R* quantify the
change in power demand from a lower to a higher energy
mode. These coefficients are estimated using the method
of least squares, based on observational data collected
over a three-day period.
The underlying logic in the architecture also supports
energy efficiency. The parameter tyaic standaby SPecifies the
duration that a production machine remains in the
operational energy state before being scheduled into the
standby state for energy-saving purposes. The variable
cm,p’ denotes the endtime point for the scheduled job h on
the machine m, while s,, ,~ indicates the startpoint of the
subsequent event on the same machine.

4.3 Energy models in the use case

In comparison with the use case in the original EAPS
architecture, the machines in the present use case have not
been energy-optimised. During analysis of the laser cutting
machines‘ power consumption, we identified an additional
inefficient standby state a5t

The electrical power consumption for the laser cutting
machine may be calculated as follows:

Ptel — (atst* + QISt + a?P + a}Nk) . :Bsetl
+(atSt + afp + a‘t’"k) - g8
0 k
+(ai® + af’) - B8y

+af - pi

1)
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st _ 1,if Smnr" — Cmnu' > twait_standby andt € [Cm,h"sm,h”]
a; = ) (2
0, otherwise
op _ (Lif Smh'" = Cmp' = Lwait_standby and ¢ € [Cm,h’lsm,h”]
a; = . (3)
0, otherwise
(Lif (Sm,h” — Cm,n' > twait_standby andt € (sm,h” + tpeakr Cm,h”)) or
wk _
@ = (Sm,h” —Cmn' < twait_standby andt € (sm,h”v Cm,h”)) (4)
0, otherwise
apk _ {Lifsm,h" — Cmn' > twait,standby andt € (Sm,h”: Smn"" + tpeak] (5)
t 0, otherwise
while we assume that the inefficient state is not tmax
incorporated into the production planning. The integration ERC = Z Z p&{t - Cy 9)
of the energy model with the production planning model is por ey

achieved through equations (2) and (3), which correspond
to the standby and operational energy states, respectively.
The following equation :

aWk - {1,t 22 [Cm,h’rsm,h”] (6)
t 0, otherwise

applies to the working state.

The sandblasting machine demonstrates distinct behavior
during the transition from standby to operational mode.
During turbine start-up and prior to the commencement of
the programmed process, an elevated power demand is
observed over a specified time period. We classify this state
the peak state, occurring over a defined time interval tpcak.

In contrast to the laser cutting machines, no additional
standby state is present. Consequently, the following
equation is utlized to calculate its electrical power
consumption:

P = (atst +a +af + afk) - B8
+ (afp +al+ afk) - BSh
+ (a}”k + afk) - Be
K

+ai" - B
The equations (2) and (3) for the standby and operational
energy states remain applicable. The binary variable
a‘,”k representing the working state is dependent on the
preceding state of the machine. If the machine was
previously in the operational state, the binary variable in
equation (4) is assigned a value of 1. Otherwise, the peak
load period is first determined using equation (5).
Finally, it is important to note that the flame cutting machine
makes use of the pre-existing electrical energy models
stored within the system.
4.4 Implementation of the objectives
For the application of the architecture, it is necessary to
implement the objectives. For the production related

objective, we use the makespan. With the equation (8), the
makespan MSKP is calculated for all the planned jobs:
max

MSKP = memaX, Cm,h (8)

For the energy related objective we use the energy related
cost ERC calculated by equation (9) where Pf;},t is the power
of a machine m and C; is the energy cost at time t.

@)

Both makespan and energy costs have already been
incorporated into the existing EAPS architecture and are
well-established objectives in the literature [Biel 2016].

The characteristic start-up behaviour of the PBC after
standby mode must be taken into account, as this leads to
a significant increase in peak loads. As a result, we make
an additional consideration of the maximum load peak
within a production plan, which serves as an additional
objective for EAPS optimisation. Equation (10) calucalutes
the maximum power peak consumption PPC of the
production plan, where P¢! is the power of a machine m:

el
te[I})}l?ri(ax] < Z Pm )
t

meM

PPC = (10)

The implementation of the developed execution service,
together with the corresponding use case, has been
published under an open-source licence [Stock 2025].

5 EVALUATION

The measurement of electrical power demand for the
machines commenced on 29 January 2024 at 00:00 and
concluded on 1 February 2024 at 12:00. This timeframe
encompasses three full production days, during which job
data were concurrently collected. For the implementation of
the complete EAPS architecture, only specific job-related
information—namely, the number of sheets, processing
time, and setup time—is considered relevant. Throughout
the measurement period, a total of 16 jobs were recorded
for the GMB, 15 for the GIC, and 13 for the GMD.

The use case under consideration pertains to a medium-
sized manufacturing company located in Germany. The
direct implementation of the extended EAPS architecture
and the deployment of the EAPS execution service on the
production machinery is currently unfeasible, primarily due
to organisational constraints and insufficient technological
infrastructure. To test the service in a live production
environment, it is necessary to use an isolated, controlled
setting. Moreover, it is crucial to guarantee that ongoing
production activities remain uninterrupted and that financial
losses are avoided. Nevertheless, it should be noted that
the provision of these conditions cannot be fully guaranteed
during the testing and evaluation phases of the EAPS
execution service.

To address this limitation, we establish a dedicated test
environment within the scope of this work. In this work, the
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OPC UA communication protocol is used as the basis for
communication between the implemented execution
service and the machines. OPC UA is a manufacturer-
independent protocol from the OPC Foundation and has
established itself as a standard to ensure interoperability
[Zezulka 2018]. This test environment consists of four
independent server instances, each simulating a server
corresponding to a production machine within the context
of the use case.

The structure for initializing a server is based on the eta-
nexus package (version 0.1.1). Each server is uniquely
defined by its name, IP address, username, and password.
In contrast, an OPC UA node is described by a unique
name, the name of the corresponding server, the NodelD,
and the associated data type. The following example
illustrates the initialization for the PBC simulation server
using a TOML configuration file:

[[system]]

name = "EAPS"

[system.servers.PBC]

url ="opc.tcp://localhost:4840"
protocol ="opcua"

usr ="admin"

pwd ="admin"

[[system.nodes]]

name= "bPBCWorkingState"

server="PBC"

opc_id =
"ns=2;s=Application.Plc_Main.PBC.localState
.bPBCWorkingState"

dtype ="bool"

In the context of the present use case, we implement all
OPC UA nodes as variables. The address space of each
OPC UA server includes the nodes bOperatingState and
sJob. During the execution of a job, the bOperatingState
variable is set to ‘“True’, and the current job, identified by its
job number, is written to the sJob node.

The evaluation phase comprises the generation of an
energy-aware production schedule and the validation of the
extended EAPS-architecture. For scheduling, we utilize the
recorded job data from January 30, 2024, and the day-
ahead electricity prices from the EPEX Spot Market
corresponding to the same date. A 24-hour production
window is assumed, excluding breaks and shift changes.
The resulting schedule serves as input for validating the
execution service within a test environment. We define a
simulation time of 10 minutes, during which the simulated
progression corresponds to the real-time execution of the
production schedule. The evaluation was performed on a
system with a 13th-generation Intel Core i7-1370P
processor.

The Fig. 3 illustrates the production schedule generated for
the use case presented in this study. Identical colors across
different machines indicate operations belonging to the
same job, while numerical indices at the GIC represent the
parallel processing of two sheets. Black bars denote
algorithm-determined pause times, and grey segments
indicate job-specific setup times. The results corresponding
to the minimum energy related cost objective reveal that the
algorithm predominantly schedules operations in the early
morning hours, while deliberately avoiding task allocation

on the PBC and GMB machines during periods of elevated
electricity prices between 07:00 and 10:00. However, we
also observe that the algorithm generates a high frequency
of job changes across the machines.

Tab. 1 presents, for each objective criterion of the multi-
objective optimisation, the solution in which this specific
objective reaches its minimum value, along with the
corresponding values of the remaining objective criteria for
that solution.

As a reference benchmark, the Shortest Processing Time
(SPT) rule is incorporated into the analysis. The results
indicate that the proposed architecture, as applied to the
presented use case, consistently outperforms the
benchmark across the defined objectives, ERC and PPC.
We achive a 6 % reduction in the energy related costs with
the architecture.

Tab. 1: Final results for the optimised objectives compared
to the SPT dispatching rule.

MKSP ERC PPC
min MKSP \ 41872

min ERC \ 146.94 €

min PPC \ 213780 W
SPT \ 40453 s 15635€ 327233 W

In the second evaluation phase, we executed the
production plan optimized for minimum energy costs using
the developed execution service and recorded the system’s
behavior in a log file for subsequent analysis. Throughout
four test runs, the execution service operated without
errors, demonstrating consistent and stable performance.

6 SUMMARY

This paper identified a gap in the existing literature
concerning EAPS architectures that are directly applicable
within production environments. In response, we develop
an execution service by extending an existing EAPS
architecture. The extension comprises two core functions:
one establishes the interface with production machinery,
while the other executes scheduled jobs using a scheduler-
based approach. We applied the enhanced architecture to
a use case derived from a medium-sized manufacturing
company in Germany. Our evaluation demonstrates the
applicability of the extended architecture within a simulated
environment. In this simulation, four OPC UA servers
emulated production machines, and standardized
interfaces enabled the transfer of planned order data to the
OPC UA servers.

We assessed the requirements by evaluating the
reusability, the flexibility and the understandability of the
developed execution service. Owing to its two encapsulated
functions and the use of standardized interfaces, the
service can be readily integrated with diverse production
planning methods and system implementations. We
introduced a custom notation and enable compatibility with
various communication protocols. Nevertheless, it remains
necessary to apply the proposed architecture to additional
problem domains and production systems. Future work
should also include validation in real-world test
environments to confirm its practical applicability.
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Fig. 3: Final solution of the EAPS architecture applied to the use case.
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